Skip to content

Commit 274a5f6

Browse files
authored
Update README.md
1 parent bfd871a commit 274a5f6

File tree

1 file changed

+54
-50
lines changed

1 file changed

+54
-50
lines changed

README.md

Lines changed: 54 additions & 50 deletions
Original file line numberDiff line numberDiff line change
@@ -32,7 +32,10 @@
3232
- [TensorFlow](#tensorflow)
3333
- [MXNet](#mxnet)
3434
- [Others](#others)
35-
- [Web Scraping](#web-scraping)
35+
- [Reinforcement Learning](#reinforcement-learning)
36+
- [Graph Machine Learning](#graph-machine-learninh)
37+
- [Probabilistic Graphical Models](#probabilistic-graphical-models)
38+
- [Probabilistic Methods](#probabilistic-methods)
3639
- [Data Manipulation](#data-manipulation)
3740
- [Data Frames](#data-frames)
3841
- [Pipelines](#pipelines)
@@ -49,8 +52,6 @@
4952
- [NLP](#nlp)
5053
- [Deployment](#deployment)
5154
- [Model Explanation](#model-explanation)
52-
- [Reinforcement Learning](#reinforcement-learning)
53-
- [Probabilistic Methods](#probabilistic-methods)
5455
- [Genetic Programming](#genetic-programming)
5556
- [Optimization](#optimization)
5657
- [Time Series](#time-series)
@@ -63,6 +64,7 @@
6364
- [Data Validation](#data-validation)
6465
- [Evaluation](#evaluation)
6566
- [Computations](#computations)
67+
- [Web Scraping](#web-scraping)
6668
- [Spatial Analysis](#spatial-analysis)
6769
- [Quantum Computing](#quantum-computing)
6870
- [Conversion](#conversion)
@@ -91,8 +93,6 @@
9193
* [RuleFit](https://github.com/christophM/rulefit) - Implementation of the rulefit. <img height="20" src="img/sklearn_big.png" alt="sklearn">
9294
* [metric-learn](https://github.com/all-umass/metric-learn) - Metric learning algorithms in Python. <img height="20" src="img/sklearn_big.png" alt="sklearn">
9395
* [pyGAM](https://github.com/dswah/pyGAM) - Generalized Additive Models in Python.
94-
* [Karate Club](https://github.com/benedekrozemberczki/karateclub) - An unsupervised machine learning library for graph-structured data.
95-
* [Little Ball of Fur](https://github.com/benedekrozemberczki/littleballoffur) - A library for sampling graph structured data.
9696
* [causalml](https://github.com/uber/causalml) - Uplift modeling and causal inference with machine learning algorithms. <img height="20" src="img/sklearn_big.png" alt="sklearn">
9797

9898
### Automated Machine Learning
@@ -145,9 +145,7 @@
145145
* [torchaudio](https://github.com/pytorch/audio) - An audio library for PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
146146
* [ignite](https://github.com/pytorch/ignite) - High-level library to help with training neural networks in PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
147147
* [skorch](https://github.com/dnouri/skorch) - A scikit-learn compatible neural network library that wraps PyTorch. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
148-
* [pytorch_geometric](https://github.com/rusty1s/pytorch_geometric) - Geometric Deep Learning Extension Library for PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
149148
* [Catalyst](https://github.com/catalyst-team/catalyst) - High-level utils for PyTorch DL & RL research. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
150-
* [pytorch_geometric_temporal](https://github.com/benedekrozemberczki/pytorch_geometric_temporal) - Temporal Extension Library for PyTorch Geometric. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
151149
* [ChemicalX](https://github.com/AstraZeneca/chemicalx) - A PyTorch-based deep learning library for drug pair scoring. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
152150

153151
### TensorFlow
@@ -168,7 +166,6 @@
168166
* [keras-contrib](https://github.com/keras-team/keras-contrib) - Keras community contributions. <img height="20" src="img/keras_big.png" alt="Keras compatible">
169167
* [Hyperas](https://github.com/maxpumperla/hyperas) - Keras + Hyperopt: A straightforward wrapper for a convenient hyperparameter. <img height="20" src="img/keras_big.png" alt="Keras compatible">
170168
* [Elephas](https://github.com/maxpumperla/elephas) - Distributed Deep learning with Keras & Spark. <img height="20" src="img/keras_big.png" alt="Keras compatible">
171-
* [Spektral](https://github.com/danielegrattarola/spektral) - Deep learning on graphs. <img height="20" src="img/keras_big.png" alt="Keras compatible">
172169
* [qkeras](https://github.com/google/qkeras) - A quantization deep learning library. <img height="20" src="img/keras_big.png" alt="Keras compatible">
173170

174171
### MXNet
@@ -189,14 +186,49 @@
189186
* [Caffe](https://github.com/BVLC/caffe) - A fast open framework for deep learning.
190187
* [hipCaffe](https://github.com/ROCmSoftwarePlatform/hipCaffe) - The HIP port of Caffe. <img height="20" src="img/amd_big.png" alt="Possible to run on AMD GPU">
191188

192-
**[DISCONTINUED PROJECTS](https://github.com/krzjoa/awesome-python-data-science/blob/master/other/deprecated.md#deep-learning)**
189+
## Reinforcement Learning
190+
* [Gymnasium](https://github.com/Farama-Foundation/Gymnasium) - An API standard for single-agent reinforcement learning environments, with popular reference environments and related utilities (formerly [Gym](https://github.com/openai/gym)).
191+
* [Stable Baselines3](https://github.com/DLR-RM/stable-baselines3) - A set of improved implementations of reinforcement learning algorithms based on OpenAI Baselines.
192+
* [RLlib](https://ray.readthedocs.io/en/latest/rllib.html) - Scalable Reinforcement Learning.
193+
* [Acme](https://github.com/google-deepmind/acme) - A library of reinforcement learning components and agents.
194+
* [Catalyst-RL](https://github.com/catalyst-team/catalyst-rl) - PyTorch framework for RL research.
195+
* [d3rlpy](https://github.com/takuseno/d3rlpy) - An offline deep reinforcement learning library.
196+
* [Tianshou](https://github.com/thu-ml/tianshou/#comprehensive-functionality) - An elegant PyTorch deep reinforcement learning library.
197+
* [TF-Agents](https://github.com/tensorflow/agents) - A library for Reinforcement Learning in TensorFlow. <img height="20" src="img/tf_big2.png" alt="sklearn">
198+
* [TensorForce](https://github.com/reinforceio/tensorforce) - A TensorFlow library for applied reinforcement learning. <img height="20" src="img/tf_big2.png" alt="sklearn">
199+
* [TRFL](https://github.com/deepmind/trfl) - TensorFlow Reinforcement Learning. <img height="20" src="img/tf_big2.png" alt="sklearn">
200+
* [Dopamine](https://github.com/google/dopamine) - A research framework for fast prototyping of reinforcement learning algorithms.
201+
* [keras-rl](https://github.com/keras-rl/keras-rl) - Deep Reinforcement Learning for Keras. <img height="20" src="img/keras_big.png" alt="Keras compatible">
202+
* [garage](https://github.com/rlworkgroup/garage) - A toolkit for reproducible reinforcement learning research.
203+
* [Horizon](https://github.com/facebookresearch/Horizon) - A platform for Applied Reinforcement Learning.
204+
205+
## Graph Machine Learning
206+
* [pytorch_geometric](https://github.com/rusty1s/pytorch_geometric) - Geometric Deep Learning Extension Library for PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
207+
* [pytorch_geometric_temporal](https://github.com/benedekrozemberczki/pytorch_geometric_temporal) - Temporal Extension Library for PyTorch Geometric. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
208+
* [Spektral](https://github.com/danielegrattarola/spektral) - Deep learning on graphs. <img height="20" src="img/keras_big.png" alt="Keras compatible">
209+
* [Karate Club](https://github.com/benedekrozemberczki/karateclub) - An unsupervised machine learning library for graph-structured data.
210+
* [Little Ball of Fur](https://github.com/benedekrozemberczki/littleballoffur) - A library for sampling graph structured data.
193211

194-
## Web Scraping
195-
* [BeautifulSoup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/): The easiest library to scrape static websites for beginners
196-
* [Scrapy](https://scrapy.org/): Fast and extensible scraping library. Can write rules and create customized scraper without touching the core
197-
* [Selenium](https://selenium-python.readthedocs.io/installation.html#introduction): Use Selenium Python API to access all functionalities of Selenium WebDriver in an intuitive way like a real user.
198-
* [Pattern](https://github.com/clips/pattern): High level scraping for well-establish websites such as Google, Twitter, and Wikipedia. Also has NLP, machine learning algorithms, and visualization
199-
* [twitterscraper](https://github.com/taspinar/twitterscraper): Efficient library to scrape Twitter
212+
## Probabilistic Graphical Models
213+
* [pomegranate](https://github.com/jmschrei/pomegranate) - Probabilistic and graphical models for Python. <img height="20" src="img/gpu_big.png" alt="GPU accelerated">
214+
* [pgmpy](https://github.com/pgmpy/pgmpy) - A python library for working with Probabilistic Graphical Models.
215+
* [pyAgrum](https://agrum.gitlab.io/) - A GRaphical Universal Modeler.
216+
217+
## Probabilistic Methods
218+
* [pyro](https://github.com/uber/pyro) - A flexible, scalable deep probabilistic programming library built on PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
219+
* [PyMC](https://github.com/pymc-devs/pymc) - Bayesian Stochastic Modelling in Python.
220+
* [ZhuSuan](http://zhusuan.readthedocs.io/en/latest/) - Bayesian Deep Learning. <img height="20" src="img/tf_big2.png" alt="sklearn">
221+
* [GPflow](http://gpflow.readthedocs.io/en/latest/?badge=latest) - Gaussian processes in TensorFlow. <img height="20" src="img/tf_big2.png" alt="sklearn">
222+
* [InferPy](https://github.com/PGM-Lab/InferPy) - Deep Probabilistic Modelling Made Easy. <img height="20" src="img/tf_big2.png" alt="sklearn">
223+
* [PyStan](https://github.com/stan-dev/pystan) - Bayesian inference using the No-U-Turn sampler (Python interface).
224+
* [sklearn-bayes](https://github.com/AmazaspShumik/sklearn-bayes) - Python package for Bayesian Machine Learning with scikit-learn API. <img height="20" src="img/sklearn_big.png" alt="sklearn">
225+
* [skpro](https://github.com/alan-turing-institute/skpro) - Supervised domain-agnostic prediction framework for probabilistic modelling by [The Alan Turing Institute](https://www.turing.ac.uk/). <img height="20" src="img/sklearn_big.png" alt="sklearn">
226+
* [PyVarInf](https://github.com/ctallec/pyvarinf) - Bayesian Deep Learning methods with Variational Inference for PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
227+
* [emcee](https://github.com/dfm/emcee) - The Python ensemble sampling toolkit for affine-invariant MCMC.
228+
* [hsmmlearn](https://github.com/jvkersch/hsmmlearn) - A library for hidden semi-Markov models with explicit durations.
229+
* [pyhsmm](https://github.com/mattjj/pyhsmm) - Bayesian inference in HSMMs and HMMs.
230+
* [GPyTorch](https://github.com/cornellius-gp/gpytorch) - A highly efficient and modular implementation of Gaussian Processes in PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
231+
* [sklearn-crfsuite](https://github.com/TeamHG-Memex/sklearn-crfsuite) - A scikit-learn-inspired API for CRFsuite. <img height="20" src="img/sklearn_big.png" alt="sklearn">
200232

201233
## Data Manipulation
202234

@@ -329,42 +361,7 @@
329361
* [tensorboard-pytorch](https://github.com/lanpa/tensorboard-pytorch) - Tensorboard for PyTorch (and chainer, mxnet, numpy, ...).
330362
* [mxboard](https://github.com/awslabs/mxboard) - Logging MXNet data for visualization in TensorBoard. <img height="20" src="img/mxnet_big.png" alt="MXNet based">
331363

332-
## Reinforcement Learning
333-
* [Gymnasium](https://github.com/Farama-Foundation/Gymnasium) - An API standard for single-agent reinforcement learning environments, with popular reference environments and related utilities (formerly [Gym](https://github.com/openai/gym)).
334-
* [Stable Baselines3](https://github.com/DLR-RM/stable-baselines3) - A set of improved implementations of reinforcement learning algorithms based on OpenAI Baselines.
335-
* [RLlib](https://ray.readthedocs.io/en/latest/rllib.html) - Scalable Reinforcement Learning.
336-
* [Acme](https://github.com/google-deepmind/acme) - A library of reinforcement learning components and agents.
337-
* [Catalyst-RL](https://github.com/catalyst-team/catalyst-rl) - PyTorch framework for RL research.
338-
* [d3rlpy](https://github.com/takuseno/d3rlpy) - An offline deep reinforcement learning library.
339-
* [Tianshou](https://github.com/thu-ml/tianshou/#comprehensive-functionality) - An elegant PyTorch deep reinforcement learning library.
340-
* [TF-Agents](https://github.com/tensorflow/agents) - A library for Reinforcement Learning in TensorFlow. <img height="20" src="img/tf_big2.png" alt="sklearn">
341-
* [TensorForce](https://github.com/reinforceio/tensorforce) - A TensorFlow library for applied reinforcement learning. <img height="20" src="img/tf_big2.png" alt="sklearn">
342-
* [TRFL](https://github.com/deepmind/trfl) - TensorFlow Reinforcement Learning. <img height="20" src="img/tf_big2.png" alt="sklearn">
343-
* [Dopamine](https://github.com/google/dopamine) - A research framework for fast prototyping of reinforcement learning algorithms.
344-
* [keras-rl](https://github.com/keras-rl/keras-rl) - Deep Reinforcement Learning for Keras. <img height="20" src="img/keras_big.png" alt="Keras compatible">
345-
* [garage](https://github.com/rlworkgroup/garage) - A toolkit for reproducible reinforcement learning research.
346-
* [Horizon](https://github.com/facebookresearch/Horizon) - A platform for Applied Reinforcement Learning.
347-
348-
## Probabilistic Graphical Models
349-
* [pomegranate](https://github.com/jmschrei/pomegranate) - Probabilistic and graphical models for Python. <img height="20" src="img/gpu_big.png" alt="GPU accelerated">
350-
* [pgmpy](https://github.com/pgmpy/pgmpy) - A python library for working with Probabilistic Graphical Models.
351-
* [pyAgrum](https://agrum.gitlab.io/) - A GRaphical Universal Modeler.
352364

353-
## Probabilistic Methods
354-
* [pyro](https://github.com/uber/pyro) - A flexible, scalable deep probabilistic programming library built on PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
355-
* [PyMC](https://github.com/pymc-devs/pymc) - Bayesian Stochastic Modelling in Python.
356-
* [ZhuSuan](http://zhusuan.readthedocs.io/en/latest/) - Bayesian Deep Learning. <img height="20" src="img/tf_big2.png" alt="sklearn">
357-
* [GPflow](http://gpflow.readthedocs.io/en/latest/?badge=latest) - Gaussian processes in TensorFlow. <img height="20" src="img/tf_big2.png" alt="sklearn">
358-
* [InferPy](https://github.com/PGM-Lab/InferPy) - Deep Probabilistic Modelling Made Easy. <img height="20" src="img/tf_big2.png" alt="sklearn">
359-
* [PyStan](https://github.com/stan-dev/pystan) - Bayesian inference using the No-U-Turn sampler (Python interface).
360-
* [sklearn-bayes](https://github.com/AmazaspShumik/sklearn-bayes) - Python package for Bayesian Machine Learning with scikit-learn API. <img height="20" src="img/sklearn_big.png" alt="sklearn">
361-
* [skpro](https://github.com/alan-turing-institute/skpro) - Supervised domain-agnostic prediction framework for probabilistic modelling by [The Alan Turing Institute](https://www.turing.ac.uk/). <img height="20" src="img/sklearn_big.png" alt="sklearn">
362-
* [PyVarInf](https://github.com/ctallec/pyvarinf) - Bayesian Deep Learning methods with Variational Inference for PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
363-
* [emcee](https://github.com/dfm/emcee) - The Python ensemble sampling toolkit for affine-invariant MCMC.
364-
* [hsmmlearn](https://github.com/jvkersch/hsmmlearn) - A library for hidden semi-Markov models with explicit durations.
365-
* [pyhsmm](https://github.com/mattjj/pyhsmm) - Bayesian inference in HSMMs and HMMs.
366-
* [GPyTorch](https://github.com/cornellius-gp/gpytorch) - A highly efficient and modular implementation of Gaussian Processes in PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
367-
* [sklearn-crfsuite](https://github.com/TeamHG-Memex/sklearn-crfsuite) - A scikit-learn-inspired API for CRFsuite. <img height="20" src="img/sklearn_big.png" alt="sklearn">
368365

369366
## Genetic Programming
370367
* [gplearn](https://github.com/trevorstephens/gplearn) - Genetic Programming in Python. <img height="20" src="img/sklearn_big.png" alt="sklearn">
@@ -495,6 +492,13 @@
495492
* [adaptive](https://github.com/python-adaptive/adaptive) - Tools for adaptive and parallel samping of mathematical functions.
496493
* [NumExpr](https://github.com/pydata/numexpr) - A fast numerical expression evaluator for NumPy that comes with an integrated computing virtual machine to speed calculations up by avoiding memory allocation for intermediate results.
497494

495+
## Web Scraping
496+
* [BeautifulSoup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/): The easiest library to scrape static websites for beginners
497+
* [Scrapy](https://scrapy.org/): Fast and extensible scraping library. Can write rules and create customized scraper without touching the core
498+
* [Selenium](https://selenium-python.readthedocs.io/installation.html#introduction): Use Selenium Python API to access all functionalities of Selenium WebDriver in an intuitive way like a real user.
499+
* [Pattern](https://github.com/clips/pattern): High level scraping for well-establish websites such as Google, Twitter, and Wikipedia. Also has NLP, machine learning algorithms, and visualization
500+
* [twitterscraper](https://github.com/taspinar/twitterscraper): Efficient library to scrape Twitter
501+
498502
## Spatial Analysis
499503
* [GeoPandas](https://github.com/geopandas/geopandas) - Python tools for geographic data. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
500504
* [PySal](https://github.com/pysal/pysal) - Python Spatial Analysis Library.

0 commit comments

Comments
 (0)