|
32 | 32 | - [TensorFlow](#tensorflow)
|
33 | 33 | - [MXNet](#mxnet)
|
34 | 34 | - [Others](#others)
|
35 |
| -- [Web Scraping](#web-scraping) |
| 35 | +- [Reinforcement Learning](#reinforcement-learning) |
| 36 | +- [Graph Machine Learning](#graph-machine-learninh) |
| 37 | +- [Probabilistic Graphical Models](#probabilistic-graphical-models) |
| 38 | +- [Probabilistic Methods](#probabilistic-methods) |
36 | 39 | - [Data Manipulation](#data-manipulation)
|
37 | 40 | - [Data Frames](#data-frames)
|
38 | 41 | - [Pipelines](#pipelines)
|
|
49 | 52 | - [NLP](#nlp)
|
50 | 53 | - [Deployment](#deployment)
|
51 | 54 | - [Model Explanation](#model-explanation)
|
52 |
| -- [Reinforcement Learning](#reinforcement-learning) |
53 |
| -- [Probabilistic Methods](#probabilistic-methods) |
54 | 55 | - [Genetic Programming](#genetic-programming)
|
55 | 56 | - [Optimization](#optimization)
|
56 | 57 | - [Time Series](#time-series)
|
|
63 | 64 | - [Data Validation](#data-validation)
|
64 | 65 | - [Evaluation](#evaluation)
|
65 | 66 | - [Computations](#computations)
|
| 67 | +- [Web Scraping](#web-scraping) |
66 | 68 | - [Spatial Analysis](#spatial-analysis)
|
67 | 69 | - [Quantum Computing](#quantum-computing)
|
68 | 70 | - [Conversion](#conversion)
|
|
91 | 93 | * [RuleFit](https://github.com/christophM/rulefit) - Implementation of the rulefit. <img height="20" src="img/sklearn_big.png" alt="sklearn">
|
92 | 94 | * [metric-learn](https://github.com/all-umass/metric-learn) - Metric learning algorithms in Python. <img height="20" src="img/sklearn_big.png" alt="sklearn">
|
93 | 95 | * [pyGAM](https://github.com/dswah/pyGAM) - Generalized Additive Models in Python.
|
94 |
| -* [Karate Club](https://github.com/benedekrozemberczki/karateclub) - An unsupervised machine learning library for graph-structured data. |
95 |
| -* [Little Ball of Fur](https://github.com/benedekrozemberczki/littleballoffur) - A library for sampling graph structured data. |
96 | 96 | * [causalml](https://github.com/uber/causalml) - Uplift modeling and causal inference with machine learning algorithms. <img height="20" src="img/sklearn_big.png" alt="sklearn">
|
97 | 97 |
|
98 | 98 | ### Automated Machine Learning
|
|
145 | 145 | * [torchaudio](https://github.com/pytorch/audio) - An audio library for PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
|
146 | 146 | * [ignite](https://github.com/pytorch/ignite) - High-level library to help with training neural networks in PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
|
147 | 147 | * [skorch](https://github.com/dnouri/skorch) - A scikit-learn compatible neural network library that wraps PyTorch. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
|
148 |
| -* [pytorch_geometric](https://github.com/rusty1s/pytorch_geometric) - Geometric Deep Learning Extension Library for PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"> |
149 | 148 | * [Catalyst](https://github.com/catalyst-team/catalyst) - High-level utils for PyTorch DL & RL research. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
|
150 |
| -* [pytorch_geometric_temporal](https://github.com/benedekrozemberczki/pytorch_geometric_temporal) - Temporal Extension Library for PyTorch Geometric. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"> |
151 | 149 | * [ChemicalX](https://github.com/AstraZeneca/chemicalx) - A PyTorch-based deep learning library for drug pair scoring. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
|
152 | 150 |
|
153 | 151 | ### TensorFlow
|
|
168 | 166 | * [keras-contrib](https://github.com/keras-team/keras-contrib) - Keras community contributions. <img height="20" src="img/keras_big.png" alt="Keras compatible">
|
169 | 167 | * [Hyperas](https://github.com/maxpumperla/hyperas) - Keras + Hyperopt: A straightforward wrapper for a convenient hyperparameter. <img height="20" src="img/keras_big.png" alt="Keras compatible">
|
170 | 168 | * [Elephas](https://github.com/maxpumperla/elephas) - Distributed Deep learning with Keras & Spark. <img height="20" src="img/keras_big.png" alt="Keras compatible">
|
171 |
| -* [Spektral](https://github.com/danielegrattarola/spektral) - Deep learning on graphs. <img height="20" src="img/keras_big.png" alt="Keras compatible"> |
172 | 169 | * [qkeras](https://github.com/google/qkeras) - A quantization deep learning library. <img height="20" src="img/keras_big.png" alt="Keras compatible">
|
173 | 170 |
|
174 | 171 | ### MXNet
|
|
189 | 186 | * [Caffe](https://github.com/BVLC/caffe) - A fast open framework for deep learning.
|
190 | 187 | * [hipCaffe](https://github.com/ROCmSoftwarePlatform/hipCaffe) - The HIP port of Caffe. <img height="20" src="img/amd_big.png" alt="Possible to run on AMD GPU">
|
191 | 188 |
|
192 |
| -**[DISCONTINUED PROJECTS](https://github.com/krzjoa/awesome-python-data-science/blob/master/other/deprecated.md#deep-learning)** |
| 189 | +## Reinforcement Learning |
| 190 | +* [Gymnasium](https://github.com/Farama-Foundation/Gymnasium) - An API standard for single-agent reinforcement learning environments, with popular reference environments and related utilities (formerly [Gym](https://github.com/openai/gym)). |
| 191 | +* [Stable Baselines3](https://github.com/DLR-RM/stable-baselines3) - A set of improved implementations of reinforcement learning algorithms based on OpenAI Baselines. |
| 192 | +* [RLlib](https://ray.readthedocs.io/en/latest/rllib.html) - Scalable Reinforcement Learning. |
| 193 | +* [Acme](https://github.com/google-deepmind/acme) - A library of reinforcement learning components and agents. |
| 194 | +* [Catalyst-RL](https://github.com/catalyst-team/catalyst-rl) - PyTorch framework for RL research. |
| 195 | +* [d3rlpy](https://github.com/takuseno/d3rlpy) - An offline deep reinforcement learning library. |
| 196 | +* [Tianshou](https://github.com/thu-ml/tianshou/#comprehensive-functionality) - An elegant PyTorch deep reinforcement learning library. |
| 197 | +* [TF-Agents](https://github.com/tensorflow/agents) - A library for Reinforcement Learning in TensorFlow. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
| 198 | +* [TensorForce](https://github.com/reinforceio/tensorforce) - A TensorFlow library for applied reinforcement learning. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
| 199 | +* [TRFL](https://github.com/deepmind/trfl) - TensorFlow Reinforcement Learning. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
| 200 | +* [Dopamine](https://github.com/google/dopamine) - A research framework for fast prototyping of reinforcement learning algorithms. |
| 201 | +* [keras-rl](https://github.com/keras-rl/keras-rl) - Deep Reinforcement Learning for Keras. <img height="20" src="img/keras_big.png" alt="Keras compatible"> |
| 202 | +* [garage](https://github.com/rlworkgroup/garage) - A toolkit for reproducible reinforcement learning research. |
| 203 | +* [Horizon](https://github.com/facebookresearch/Horizon) - A platform for Applied Reinforcement Learning. |
| 204 | + |
| 205 | +## Graph Machine Learning |
| 206 | +* [pytorch_geometric](https://github.com/rusty1s/pytorch_geometric) - Geometric Deep Learning Extension Library for PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"> |
| 207 | +* [pytorch_geometric_temporal](https://github.com/benedekrozemberczki/pytorch_geometric_temporal) - Temporal Extension Library for PyTorch Geometric. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"> |
| 208 | +* [Spektral](https://github.com/danielegrattarola/spektral) - Deep learning on graphs. <img height="20" src="img/keras_big.png" alt="Keras compatible"> |
| 209 | +* [Karate Club](https://github.com/benedekrozemberczki/karateclub) - An unsupervised machine learning library for graph-structured data. |
| 210 | +* [Little Ball of Fur](https://github.com/benedekrozemberczki/littleballoffur) - A library for sampling graph structured data. |
193 | 211 |
|
194 |
| -## Web Scraping |
195 |
| -* [BeautifulSoup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/): The easiest library to scrape static websites for beginners |
196 |
| -* [Scrapy](https://scrapy.org/): Fast and extensible scraping library. Can write rules and create customized scraper without touching the core |
197 |
| -* [Selenium](https://selenium-python.readthedocs.io/installation.html#introduction): Use Selenium Python API to access all functionalities of Selenium WebDriver in an intuitive way like a real user. |
198 |
| -* [Pattern](https://github.com/clips/pattern): High level scraping for well-establish websites such as Google, Twitter, and Wikipedia. Also has NLP, machine learning algorithms, and visualization |
199 |
| -* [twitterscraper](https://github.com/taspinar/twitterscraper): Efficient library to scrape Twitter |
| 212 | +## Probabilistic Graphical Models |
| 213 | +* [pomegranate](https://github.com/jmschrei/pomegranate) - Probabilistic and graphical models for Python. <img height="20" src="img/gpu_big.png" alt="GPU accelerated"> |
| 214 | +* [pgmpy](https://github.com/pgmpy/pgmpy) - A python library for working with Probabilistic Graphical Models. |
| 215 | +* [pyAgrum](https://agrum.gitlab.io/) - A GRaphical Universal Modeler. |
| 216 | + |
| 217 | +## Probabilistic Methods |
| 218 | +* [pyro](https://github.com/uber/pyro) - A flexible, scalable deep probabilistic programming library built on PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"> |
| 219 | +* [PyMC](https://github.com/pymc-devs/pymc) - Bayesian Stochastic Modelling in Python. |
| 220 | +* [ZhuSuan](http://zhusuan.readthedocs.io/en/latest/) - Bayesian Deep Learning. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
| 221 | +* [GPflow](http://gpflow.readthedocs.io/en/latest/?badge=latest) - Gaussian processes in TensorFlow. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
| 222 | +* [InferPy](https://github.com/PGM-Lab/InferPy) - Deep Probabilistic Modelling Made Easy. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
| 223 | +* [PyStan](https://github.com/stan-dev/pystan) - Bayesian inference using the No-U-Turn sampler (Python interface). |
| 224 | +* [sklearn-bayes](https://github.com/AmazaspShumik/sklearn-bayes) - Python package for Bayesian Machine Learning with scikit-learn API. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
| 225 | +* [skpro](https://github.com/alan-turing-institute/skpro) - Supervised domain-agnostic prediction framework for probabilistic modelling by [The Alan Turing Institute](https://www.turing.ac.uk/). <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
| 226 | +* [PyVarInf](https://github.com/ctallec/pyvarinf) - Bayesian Deep Learning methods with Variational Inference for PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"> |
| 227 | +* [emcee](https://github.com/dfm/emcee) - The Python ensemble sampling toolkit for affine-invariant MCMC. |
| 228 | +* [hsmmlearn](https://github.com/jvkersch/hsmmlearn) - A library for hidden semi-Markov models with explicit durations. |
| 229 | +* [pyhsmm](https://github.com/mattjj/pyhsmm) - Bayesian inference in HSMMs and HMMs. |
| 230 | +* [GPyTorch](https://github.com/cornellius-gp/gpytorch) - A highly efficient and modular implementation of Gaussian Processes in PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"> |
| 231 | +* [sklearn-crfsuite](https://github.com/TeamHG-Memex/sklearn-crfsuite) - A scikit-learn-inspired API for CRFsuite. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
200 | 232 |
|
201 | 233 | ## Data Manipulation
|
202 | 234 |
|
|
329 | 361 | * [tensorboard-pytorch](https://github.com/lanpa/tensorboard-pytorch) - Tensorboard for PyTorch (and chainer, mxnet, numpy, ...).
|
330 | 362 | * [mxboard](https://github.com/awslabs/mxboard) - Logging MXNet data for visualization in TensorBoard. <img height="20" src="img/mxnet_big.png" alt="MXNet based">
|
331 | 363 |
|
332 |
| -## Reinforcement Learning |
333 |
| -* [Gymnasium](https://github.com/Farama-Foundation/Gymnasium) - An API standard for single-agent reinforcement learning environments, with popular reference environments and related utilities (formerly [Gym](https://github.com/openai/gym)). |
334 |
| -* [Stable Baselines3](https://github.com/DLR-RM/stable-baselines3) - A set of improved implementations of reinforcement learning algorithms based on OpenAI Baselines. |
335 |
| -* [RLlib](https://ray.readthedocs.io/en/latest/rllib.html) - Scalable Reinforcement Learning. |
336 |
| -* [Acme](https://github.com/google-deepmind/acme) - A library of reinforcement learning components and agents. |
337 |
| -* [Catalyst-RL](https://github.com/catalyst-team/catalyst-rl) - PyTorch framework for RL research. |
338 |
| -* [d3rlpy](https://github.com/takuseno/d3rlpy) - An offline deep reinforcement learning library. |
339 |
| -* [Tianshou](https://github.com/thu-ml/tianshou/#comprehensive-functionality) - An elegant PyTorch deep reinforcement learning library. |
340 |
| -* [TF-Agents](https://github.com/tensorflow/agents) - A library for Reinforcement Learning in TensorFlow. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
341 |
| -* [TensorForce](https://github.com/reinforceio/tensorforce) - A TensorFlow library for applied reinforcement learning. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
342 |
| -* [TRFL](https://github.com/deepmind/trfl) - TensorFlow Reinforcement Learning. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
343 |
| -* [Dopamine](https://github.com/google/dopamine) - A research framework for fast prototyping of reinforcement learning algorithms. |
344 |
| -* [keras-rl](https://github.com/keras-rl/keras-rl) - Deep Reinforcement Learning for Keras. <img height="20" src="img/keras_big.png" alt="Keras compatible"> |
345 |
| -* [garage](https://github.com/rlworkgroup/garage) - A toolkit for reproducible reinforcement learning research. |
346 |
| -* [Horizon](https://github.com/facebookresearch/Horizon) - A platform for Applied Reinforcement Learning. |
347 |
| - |
348 |
| -## Probabilistic Graphical Models |
349 |
| -* [pomegranate](https://github.com/jmschrei/pomegranate) - Probabilistic and graphical models for Python. <img height="20" src="img/gpu_big.png" alt="GPU accelerated"> |
350 |
| -* [pgmpy](https://github.com/pgmpy/pgmpy) - A python library for working with Probabilistic Graphical Models. |
351 |
| -* [pyAgrum](https://agrum.gitlab.io/) - A GRaphical Universal Modeler. |
352 | 364 |
|
353 |
| -## Probabilistic Methods |
354 |
| -* [pyro](https://github.com/uber/pyro) - A flexible, scalable deep probabilistic programming library built on PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"> |
355 |
| -* [PyMC](https://github.com/pymc-devs/pymc) - Bayesian Stochastic Modelling in Python. |
356 |
| -* [ZhuSuan](http://zhusuan.readthedocs.io/en/latest/) - Bayesian Deep Learning. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
357 |
| -* [GPflow](http://gpflow.readthedocs.io/en/latest/?badge=latest) - Gaussian processes in TensorFlow. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
358 |
| -* [InferPy](https://github.com/PGM-Lab/InferPy) - Deep Probabilistic Modelling Made Easy. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
359 |
| -* [PyStan](https://github.com/stan-dev/pystan) - Bayesian inference using the No-U-Turn sampler (Python interface). |
360 |
| -* [sklearn-bayes](https://github.com/AmazaspShumik/sklearn-bayes) - Python package for Bayesian Machine Learning with scikit-learn API. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
361 |
| -* [skpro](https://github.com/alan-turing-institute/skpro) - Supervised domain-agnostic prediction framework for probabilistic modelling by [The Alan Turing Institute](https://www.turing.ac.uk/). <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
362 |
| -* [PyVarInf](https://github.com/ctallec/pyvarinf) - Bayesian Deep Learning methods with Variational Inference for PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"> |
363 |
| -* [emcee](https://github.com/dfm/emcee) - The Python ensemble sampling toolkit for affine-invariant MCMC. |
364 |
| -* [hsmmlearn](https://github.com/jvkersch/hsmmlearn) - A library for hidden semi-Markov models with explicit durations. |
365 |
| -* [pyhsmm](https://github.com/mattjj/pyhsmm) - Bayesian inference in HSMMs and HMMs. |
366 |
| -* [GPyTorch](https://github.com/cornellius-gp/gpytorch) - A highly efficient and modular implementation of Gaussian Processes in PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"> |
367 |
| -* [sklearn-crfsuite](https://github.com/TeamHG-Memex/sklearn-crfsuite) - A scikit-learn-inspired API for CRFsuite. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
368 | 365 |
|
369 | 366 | ## Genetic Programming
|
370 | 367 | * [gplearn](https://github.com/trevorstephens/gplearn) - Genetic Programming in Python. <img height="20" src="img/sklearn_big.png" alt="sklearn">
|
|
495 | 492 | * [adaptive](https://github.com/python-adaptive/adaptive) - Tools for adaptive and parallel samping of mathematical functions.
|
496 | 493 | * [NumExpr](https://github.com/pydata/numexpr) - A fast numerical expression evaluator for NumPy that comes with an integrated computing virtual machine to speed calculations up by avoiding memory allocation for intermediate results.
|
497 | 494 |
|
| 495 | +## Web Scraping |
| 496 | +* [BeautifulSoup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/): The easiest library to scrape static websites for beginners |
| 497 | +* [Scrapy](https://scrapy.org/): Fast and extensible scraping library. Can write rules and create customized scraper without touching the core |
| 498 | +* [Selenium](https://selenium-python.readthedocs.io/installation.html#introduction): Use Selenium Python API to access all functionalities of Selenium WebDriver in an intuitive way like a real user. |
| 499 | +* [Pattern](https://github.com/clips/pattern): High level scraping for well-establish websites such as Google, Twitter, and Wikipedia. Also has NLP, machine learning algorithms, and visualization |
| 500 | +* [twitterscraper](https://github.com/taspinar/twitterscraper): Efficient library to scrape Twitter |
| 501 | + |
498 | 502 | ## Spatial Analysis
|
499 | 503 | * [GeoPandas](https://github.com/geopandas/geopandas) - Python tools for geographic data. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
|
500 | 504 | * [PySal](https://github.com/pysal/pysal) - Python Spatial Analysis Library.
|
|
0 commit comments