@@ -43,11 +43,11 @@ def gromov_wasserstein(C1, C2, p=None, q=None, loss_fun='square_loss', symmetric
4343
4444 Where :
4545
46- - :math:`\mathbf{C_1}`: Metric cost matrix in the source space
47- - :math:`\mathbf{C_2}`: Metric cost matrix in the target space
48- - :math:`\mathbf{p}`: distribution in the source space
49- - :math:`\mathbf{q}`: distribution in the target space
50- - `L`: loss function to account for the misfit between the similarity matrices
46+ - :math:`\mathbf{C_1}`: Metric cost matrix in the source space.
47+ - :math:`\mathbf{C_2}`: Metric cost matrix in the target space.
48+ - :math:`\mathbf{p}`: Distribution in the source space.
49+ - :math:`\mathbf{q}`: Distribution in the target space.
50+ - `L`: Loss function to account for the misfit between the similarity matrices.
5151
5252 .. note:: This function is backend-compatible and will work on arrays
5353 from all compatible backends. But the algorithm uses the C++ CPU backend
@@ -62,39 +62,39 @@ def gromov_wasserstein(C1, C2, p=None, q=None, loss_fun='square_loss', symmetric
6262 Parameters
6363 ----------
6464 C1 : array-like, shape (ns, ns)
65- Metric cost matrix in the source space
65+ Metric cost matrix in the source space.
6666 C2 : array-like, shape (nt, nt)
67- Metric cost matrix in the target space
67+ Metric cost matrix in the target space.
6868 p : array-like, shape (ns,), optional
6969 Distribution in the source space.
7070 If let to its default value None, uniform distribution is taken.
7171 q : array-like, shape (nt,), optional
7272 Distribution in the target space.
7373 If let to its default value None, uniform distribution is taken.
7474 loss_fun : str, optional
75- loss function used for the solver either 'square_loss' or 'kl_loss'
75+ Loss function used for the solver either 'square_loss' or 'kl_loss'.
7676 symmetric : bool, optional
7777 Either C1 and C2 are to be assumed symmetric or not.
7878 If let to its default None value, a symmetry test will be conducted.
7979 Else if set to True (resp. False), C1 and C2 will be assumed symmetric (resp. asymmetric).
8080 verbose : bool, optional
81- Print information along iterations
81+ Print information along iterations.
8282 log : bool, optional
83- record log if True
83+ Record log if True.
8484 armijo : bool, optional
85- If True the step of the line-search is found via an armijo research . Else closed form is used.
86- If there are convergence issues use False.
85+ If True, the step of the line-search is found via an armijo search . Else closed form is used.
86+ If there are convergence issues, use False.
8787 G0: array-like, shape (ns,nt), optional
88- If None the initial transport plan of the solver is pq^T.
88+ If None, the initial transport plan of the solver is pq^T.
8989 Otherwise G0 must satisfy marginal constraints and will be used as initial transport of the solver.
9090 max_iter : int, optional
91- Max number of iterations
91+ Max number of iterations.
9292 tol_rel : float, optional
93- Stop threshold on relative error (>0)
93+ Stop threshold on relative error (>0).
9494 tol_abs : float, optional
95- Stop threshold on absolute error (>0)
95+ Stop threshold on absolute error (>0).
9696 **kwargs : dict
97- parameters can be directly passed to the ot.optim.cg solver
97+ Parameters can be directly passed to the ot.optim.cg solver.
9898
9999 Returns
100100 -------
@@ -175,7 +175,7 @@ def line_search(cost, G, deltaG, Mi, cost_G, **kwargs):
175175
176176 if not nx .is_floating_point (C10 ):
177177 warnings .warn (
178- "Input structure matrix consists of integer . The transport plan will be "
178+ "Input structure matrix consists of integers . The transport plan will be "
179179 "casted accordingly, possibly resulting in a loss of precision. "
180180 "If this behaviour is unwanted, please make sure your input "
181181 "structure matrix consists of floating point elements." ,
0 commit comments