|
| 1 | +import pickle |
| 2 | +import sys |
| 3 | +import os |
| 4 | +import numpy as np |
| 5 | +import keras |
| 6 | +import tensorflow as tf |
| 7 | +import keras.backend as K |
| 8 | +import subprocess |
| 9 | +import time |
| 10 | +from keras2c.keras2c_main import k2c |
| 11 | + |
| 12 | +num_cores = 1 |
| 13 | +config = tf.ConfigProto(intra_op_parallelism_threads=num_cores, |
| 14 | + inter_op_parallelism_threads=num_cores, |
| 15 | + allow_soft_placement=True, |
| 16 | + device_count={'CPU': 1, |
| 17 | + 'GPU': 0}) |
| 18 | +session = tf.Session(config=config) |
| 19 | +K.set_session(session) |
| 20 | + |
| 21 | + |
| 22 | +def build_and_run(name, return_output=False, cc='gcc'): |
| 23 | + |
| 24 | + cwd = os.getcwd() |
| 25 | + os.chdir(os.path.abspath('./include/')) |
| 26 | + lib_code = subprocess.run(['make', 'CC={}'.format(cc)]).returncode |
| 27 | + os.chdir(os.path.abspath(cwd)) |
| 28 | + if lib_code != 0: |
| 29 | + return 'lib build failed' |
| 30 | + |
| 31 | + ccflags = ' -O3 -std=c99 -I./include/' |
| 32 | + if cc == 'gcc': |
| 33 | + ccflags += ' -march=native' |
| 34 | + elif cc == 'icc': |
| 35 | + ccflags += ' -xHost' |
| 36 | + |
| 37 | + comp = cc + ccflags + ' -o ' + name + ' ' + name + '.c ' + \ |
| 38 | + name + '_test_suite.c -L./include/ -l:libkeras2c.a -lm' |
| 39 | + build_code = subprocess.run(comp.split()).returncode |
| 40 | + if build_code != 0: |
| 41 | + return 'build failed' |
| 42 | + |
| 43 | + if return_output: |
| 44 | + proc_output = subprocess.run( |
| 45 | + ['./' + name], capture_output=True, text=True) |
| 46 | + else: |
| 47 | + proc_output = subprocess.run(['./' + name]) |
| 48 | + rcode = proc_output.returncode |
| 49 | + if rcode == 0: |
| 50 | + if not os.environ.get('CI'): |
| 51 | + subprocess.run('rm ' + name + '*', shell=True) |
| 52 | + return (rcode, proc_output.stdout) if return_output else rcode |
| 53 | + return rcode |
| 54 | + |
| 55 | + |
| 56 | +def time_model(model, num_tests, num_runs): |
| 57 | + pytimes = np.zeros(num_runs) |
| 58 | + ctimes = np.zeros(num_runs) |
| 59 | + nparams = model.count_params() |
| 60 | + |
| 61 | + k2c(model, 'foo', num_tests=num_tests, malloc=False, verbose=False) |
| 62 | + out = build_and_run('foo', True, 'icc')[1] |
| 63 | + |
| 64 | + for j in range(num_runs): |
| 65 | + ctimes[j] = float(out.split('\n')[0].split(' ')[-3]) |
| 66 | + |
| 67 | + inp = np.random.random((num_tests, *model.input_shape[1:])) |
| 68 | + inp = np.expand_dims(inp, 1) |
| 69 | + for j in range(num_runs): |
| 70 | + t0 = time.time_ns() |
| 71 | + for i in range(num_tests): |
| 72 | + _ = model.predict(inp[i]) |
| 73 | + t1 = time.time_ns() |
| 74 | + pytimes[j] = (t1-t0)/10**9/num_tests |
| 75 | + return nparams, ctimes, pytimes |
| 76 | + |
| 77 | + |
| 78 | +time_data = {} |
| 79 | + |
| 80 | + |
| 81 | +"""Dense Model""" |
| 82 | +size = [] |
| 83 | +ctimes = [] |
| 84 | +pytimes = [] |
| 85 | +save_dims = [] |
| 86 | +save_layers = [] |
| 87 | + |
| 88 | +num_tests = 10 |
| 89 | +num_runs = 10 |
| 90 | +nlayers = [1, 2, 4] |
| 91 | +dims = [8, 16, 32] |
| 92 | + |
| 93 | +for nl in nlayers: |
| 94 | + for dim in dims: |
| 95 | + inshp = (dim,) |
| 96 | + model = keras.models.Sequential() |
| 97 | + model.add(keras.layers.Dense( |
| 98 | + dim, input_shape=inshp, activation='relu')) |
| 99 | + if nl > 1: |
| 100 | + for i in range(nl-1): |
| 101 | + model.add(keras.layers.Dense(dim, activation='relu')) |
| 102 | + model.build() |
| 103 | + nparams, ctime, pytime = time_model(model, num_tests, num_runs) |
| 104 | + size.append(nparams) |
| 105 | + ctimes.append(ctime) |
| 106 | + pytimes.append(pytime) |
| 107 | + save_dims.append(dim) |
| 108 | + save_layers.append(nl) |
| 109 | + |
| 110 | +time_data['Fully Connected'] = {'size': size, |
| 111 | + 'layers': save_layers, |
| 112 | + 'dim': save_dims, |
| 113 | + 'ctimes': ctimes, |
| 114 | + 'pytimes': pytimes} |
| 115 | + |
| 116 | +with open('k2c_benchmark_times.pkl', 'wb+') as f: |
| 117 | + pickle.dump(time_data, f) |
| 118 | + |
| 119 | + |
| 120 | +"""Conv1D Model""" |
| 121 | +size = [] |
| 122 | +ctimes = [] |
| 123 | +pytimes = [] |
| 124 | +save_dims = [] |
| 125 | +save_layers = [] |
| 126 | + |
| 127 | +num_tests = 10 |
| 128 | +num_runs = 10 |
| 129 | +nlayers = [1, 2, 4] |
| 130 | +dims = [8, 16, 32] |
| 131 | + |
| 132 | + |
| 133 | +for nl in nlayers: |
| 134 | + for dim in dims: |
| 135 | + inshp = (dim, 4) |
| 136 | + model = keras.models.Sequential() |
| 137 | + model.add(keras.layers.Conv1D(4, kernel_size=int( |
| 138 | + dim**.5), input_shape=inshp, padding='same')) |
| 139 | + if nl > 1: |
| 140 | + for i in range(nl-1): |
| 141 | + model.add(keras.layers.Conv1D( |
| 142 | + 10 + 2*i, kernel_size=int(dim**.5), padding='same')) |
| 143 | + |
| 144 | + model.build() |
| 145 | + nparams, ctime, pytime = time_model(model, num_tests, num_runs) |
| 146 | + size.append(nparams) |
| 147 | + ctimes.append(ctime) |
| 148 | + pytimes.append(pytime) |
| 149 | + save_dims.append(dim) |
| 150 | + save_layers.append(nl) |
| 151 | + |
| 152 | +time_data['Conv1D'] = {'size': size, |
| 153 | + 'layers': save_layers, |
| 154 | + 'dim': save_dims, |
| 155 | + 'ctimes': ctimes, |
| 156 | + 'pytimes': pytimes} |
| 157 | + |
| 158 | + |
| 159 | +with open('k2c_benchmark_times.pkl', 'wb+') as f: |
| 160 | + pickle.dump(time_data, f) |
| 161 | + |
| 162 | + |
| 163 | +"""Conv2D Model""" |
| 164 | +size = [] |
| 165 | +ctimes = [] |
| 166 | +pytimes = [] |
| 167 | +save_dims = [] |
| 168 | +save_layers = [] |
| 169 | + |
| 170 | +num_tests = 10 |
| 171 | +num_runs = 10 |
| 172 | +nlayers = [1, 2, 4] |
| 173 | +dims = [8, 12, 16, 24, 32] |
| 174 | + |
| 175 | + |
| 176 | +for nl in nlayers: |
| 177 | + for dim in dims: |
| 178 | + inshp = (dim, dim, 3) |
| 179 | + model = keras.models.Sequential() |
| 180 | + model.add(keras.layers.Conv2D(5, kernel_size=int( |
| 181 | + np.log2(dim)), input_shape=inshp, padding='same')) |
| 182 | + if nl > 1: |
| 183 | + for i in range(nl-1): |
| 184 | + model.add(keras.layers.Conv2D( |
| 185 | + 10+2*i**2, kernel_size=int(np.log2(dim)), padding='same')) |
| 186 | + |
| 187 | + model.build() |
| 188 | + nparams, ctime, pytime = time_model(model, num_tests, num_runs) |
| 189 | + size.append(nparams) |
| 190 | + ctimes.append(ctime) |
| 191 | + pytimes.append(pytime) |
| 192 | + save_dims.append(dim) |
| 193 | + save_layers.append(nl) |
| 194 | + |
| 195 | +time_data['Conv2D'] = {'size': size, |
| 196 | + 'layers': save_layers, |
| 197 | + 'dim': save_dims, |
| 198 | + 'ctimes': ctimes, |
| 199 | + 'pytimes': pytimes} |
| 200 | + |
| 201 | + |
| 202 | +with open('k2c_benchmark_times.pkl', 'wb+') as f: |
| 203 | + pickle.dump(time_data, f) |
| 204 | + |
| 205 | + |
| 206 | +"""LSTM Model""" |
| 207 | +size = [] |
| 208 | +ctimes = [] |
| 209 | +pytimes = [] |
| 210 | +save_dims = [] |
| 211 | +save_layers = [] |
| 212 | + |
| 213 | +num_tests = 10 |
| 214 | +num_runs = 10 |
| 215 | +nlayers = [1, 2, 4] |
| 216 | +dims = [8, 16, 32] |
| 217 | + |
| 218 | + |
| 219 | +for nl in nlayers: |
| 220 | + for dim in dims: |
| 221 | + inshp = (int(np.sqrt(dim)), dim) |
| 222 | + model = keras.models.Sequential() |
| 223 | + model.add(keras.layers.LSTM( |
| 224 | + dim, return_sequences=True, input_shape=inshp)) |
| 225 | + if nl > 1: |
| 226 | + for i in range(nl-1): |
| 227 | + model.add(keras.layers.LSTM( |
| 228 | + dim, return_sequences=True, input_shape=inshp)) |
| 229 | + |
| 230 | + model.build() |
| 231 | + nparams, ctime, pytime = time_model(model, num_tests, num_runs) |
| 232 | + size.append(nparams) |
| 233 | + ctimes.append(ctime) |
| 234 | + pytimes.append(pytime) |
| 235 | + save_dims.append(dim) |
| 236 | + save_layers.append(nl) |
| 237 | + |
| 238 | +time_data['LSTM'] = {'size': size, |
| 239 | + 'layers': save_layers, |
| 240 | + 'dim': save_dims, |
| 241 | + 'ctimes': ctimes, |
| 242 | + 'pytimes': pytimes} |
| 243 | + |
| 244 | + |
| 245 | +with open('k2c_benchmark_times.pkl', 'wb+') as f: |
| 246 | + pickle.dump(time_data, f) |
0 commit comments