|
| 1 | +''' |
| 2 | + author: Peijie Sun |
| 3 | + e-mail: sun.hfut@gmail.com |
| 4 | + released date: 04/18/2019 |
| 5 | +''' |
| 6 | + |
| 7 | +from collections import defaultdict |
| 8 | +import numpy as np |
| 9 | +from time import time |
| 10 | +import random |
| 11 | + |
| 12 | +class DataModule(): |
| 13 | + def __init__(self, conf, filename): |
| 14 | + self.conf = conf |
| 15 | + self.data_dict = {} |
| 16 | + self.terminal_flag = 1 |
| 17 | + self.filename = filename |
| 18 | + self.index = 0 |
| 19 | + |
| 20 | +########################################### Initalize Procedures ############################################ |
| 21 | + def prepareModelSupplement(self, model): |
| 22 | + data_dict = {} |
| 23 | + if 'CONSUMED_ITEMS_SPARSE_MATRIX' in model.supply_set: |
| 24 | + self.generateConsumedItemsSparseMatrix() |
| 25 | + data_dict['CONSUMED_ITEMS_INDICES_INPUT'] = self.consumed_items_indices_list |
| 26 | + data_dict['CONSUMED_ITEMS_VALUES_INPUT'] = self.consumed_items_values_list |
| 27 | + if 'SOCIAL_NEIGHBORS_SPARSE_MATRIX' in model.supply_set: |
| 28 | + self.readSocialNeighbors() |
| 29 | + self.generateSocialNeighborsSparseMatrix() |
| 30 | + data_dict['SOCIAL_NEIGHBORS_INDICES_INPUT'] = self.social_neighbors_indices_list |
| 31 | + data_dict['SOCIAL_NEIGHBORS_VALUES_INPUT'] = self.social_neighbors_values_list |
| 32 | + return data_dict |
| 33 | + |
| 34 | + def initializeRankingTrain(self): |
| 35 | + self.readData() |
| 36 | + self.arrangePositiveData() |
| 37 | + self.generateTrainNegative() |
| 38 | + |
| 39 | + def initializeRankingVT(self): |
| 40 | + self.readData() |
| 41 | + self.arrangePositiveData() |
| 42 | + self.generateTrainNegative() |
| 43 | + |
| 44 | + def initalizeRankingEva(self): |
| 45 | + self.readData() |
| 46 | + self.getEvaPositiveBatch() |
| 47 | + self.generateEvaNegative() |
| 48 | + |
| 49 | + def linkedMap(self): |
| 50 | + self.data_dict['USER_LIST'] = self.user_list |
| 51 | + self.data_dict['ITEM_LIST'] = self.item_list |
| 52 | + self.data_dict['LABEL_LIST'] = self.labels_list |
| 53 | + |
| 54 | + def linkedRankingEvaMap(self): |
| 55 | + self.data_dict['EVA_USER_LIST'] = self.eva_user_list |
| 56 | + self.data_dict['EVA_ITEM_LIST'] = self.eva_item_list |
| 57 | + |
| 58 | +########################################### Ranking ############################################ |
| 59 | + def readData(self): |
| 60 | + f = open(self.filename) ## May should be specific for different subtasks |
| 61 | + total_user_list = set() |
| 62 | + hash_data = defaultdict(int) |
| 63 | + for _, line in enumerate(f): |
| 64 | + arr = line.split("\t") |
| 65 | + hash_data[(int(arr[0]), int(arr[1]))] = 1 |
| 66 | + total_user_list.add(int(arr[0])) |
| 67 | + self.total_user_list = list(total_user_list) |
| 68 | + self.hash_data = hash_data |
| 69 | + |
| 70 | + def arrangePositiveData(self): |
| 71 | + positive_data = defaultdict(set) |
| 72 | + total_data = set() |
| 73 | + hash_data = self.hash_data |
| 74 | + for (u, i) in hash_data: |
| 75 | + total_data.add((u, i)) |
| 76 | + positive_data[u].add(i) |
| 77 | + self.positive_data = positive_data |
| 78 | + self.total_data = len(total_data) |
| 79 | + |
| 80 | + ''' |
| 81 | + This function designes for the train/val/test negative generating section |
| 82 | + ''' |
| 83 | + def generateTrainNegative(self): |
| 84 | + num_items = self.conf.num_items |
| 85 | + num_negatives = self.conf.num_negatives |
| 86 | + negative_data = defaultdict(set) |
| 87 | + total_data = set() |
| 88 | + hash_data = self.hash_data |
| 89 | + for (u, i) in hash_data: |
| 90 | + total_data.add((u, i)) |
| 91 | + for _ in range(num_negatives): |
| 92 | + j = np.random.randint(num_items) |
| 93 | + while (u, j) in hash_data: |
| 94 | + j = np.random.randint(num_items) |
| 95 | + negative_data[u].add(j) |
| 96 | + total_data.add((u, j)) |
| 97 | + self.negative_data = negative_data |
| 98 | + self.terminal_flag = 1 |
| 99 | + |
| 100 | + ''' |
| 101 | + This function designes for the val/test section, compute loss |
| 102 | + ''' |
| 103 | + def getVTRankingOneBatch(self): |
| 104 | + positive_data = self.positive_data |
| 105 | + negative_data = self.negative_data |
| 106 | + total_user_list = self.total_user_list |
| 107 | + user_list = [] |
| 108 | + item_list = [] |
| 109 | + labels_list = [] |
| 110 | + for u in total_user_list: |
| 111 | + user_list.extend([u] * len(positive_data[u])) |
| 112 | + item_list.extend(positive_data[u]) |
| 113 | + labels_list.extend([1] * len(positive_data[u])) |
| 114 | + user_list.extend([u] * len(negative_data[u])) |
| 115 | + item_list.extend(negative_data[u]) |
| 116 | + labels_list.extend([0] * len(negative_data[u])) |
| 117 | + |
| 118 | + self.user_list = np.reshape(user_list, [-1, 1]) |
| 119 | + self.item_list = np.reshape(item_list, [-1, 1]) |
| 120 | + self.labels_list = np.reshape(labels_list, [-1, 1]) |
| 121 | + |
| 122 | + ''' |
| 123 | + This function designes for the training process |
| 124 | + ''' |
| 125 | + def getTrainRankingBatch(self): |
| 126 | + positive_data = self.positive_data |
| 127 | + negative_data = self.negative_data |
| 128 | + total_user_list = self.total_user_list |
| 129 | + index = self.index |
| 130 | + batch_size = self.conf.training_batch_size |
| 131 | + |
| 132 | + user_list, item_list, labels_list = [], [], [] |
| 133 | + |
| 134 | + if index + batch_size < len(total_user_list): |
| 135 | + target_user_list = total_user_list[index:index+batch_size] |
| 136 | + self.index = index + batch_size |
| 137 | + else: |
| 138 | + target_user_list = total_user_list[index:len(total_user_list)] |
| 139 | + self.index = 0 |
| 140 | + self.terminal_flag = 0 |
| 141 | + |
| 142 | + for u in target_user_list: |
| 143 | + user_list.extend([u] * len(positive_data[u])) |
| 144 | + item_list.extend(list(positive_data[u])) |
| 145 | + labels_list.extend([1] * len(positive_data[u])) |
| 146 | + user_list.extend([u] * len(negative_data[u])) |
| 147 | + item_list.extend(list(negative_data[u])) |
| 148 | + labels_list.extend([0] * len(negative_data[u])) |
| 149 | + |
| 150 | + self.user_list = np.reshape(user_list, [-1, 1]) |
| 151 | + self.item_list = np.reshape(item_list, [-1, 1]) |
| 152 | + self.labels_list = np.reshape(labels_list, [-1, 1]) |
| 153 | + |
| 154 | + ''' |
| 155 | + This function designes for the positive data in rating evaluate section |
| 156 | + ''' |
| 157 | + def getEvaPositiveBatch(self): |
| 158 | + hash_data = self.hash_data |
| 159 | + user_list = [] |
| 160 | + item_list = [] |
| 161 | + index_dict = defaultdict(list) |
| 162 | + index = 0 |
| 163 | + for (u, i) in hash_data: |
| 164 | + user_list.append(u) |
| 165 | + item_list.append(i) |
| 166 | + index_dict[u].append(index) |
| 167 | + index = index + 1 |
| 168 | + self.eva_user_list = np.reshape(user_list, [-1, 1]) |
| 169 | + self.eva_item_list = np.reshape(item_list, [-1, 1]) |
| 170 | + self.eva_index_dict = index_dict |
| 171 | + |
| 172 | + ''' |
| 173 | + This function designes for the negative data generation process in rating evaluate section |
| 174 | + ''' |
| 175 | + def generateEvaNegative(self): |
| 176 | + hash_data = self.hash_data |
| 177 | + total_user_list = self.total_user_list |
| 178 | + num_evaluate = self.conf.num_evaluate |
| 179 | + num_items = self.conf.num_items |
| 180 | + eva_negative_data = defaultdict(list) |
| 181 | + for u in total_user_list: |
| 182 | + for _ in range(num_evaluate): |
| 183 | + j = np.random.randint(num_items) |
| 184 | + while (u, j) in hash_data: |
| 185 | + j = np.random.randint(num_items) |
| 186 | + eva_negative_data[u].append(j) |
| 187 | + self.eva_negative_data = eva_negative_data |
| 188 | + |
| 189 | + ''' |
| 190 | + This function designs for the rating evaluate section, generate negative batch |
| 191 | + ''' |
| 192 | + def getEvaRankingBatch(self): |
| 193 | + batch_size = self.conf.evaluate_batch_size |
| 194 | + num_evaluate = self.conf.num_evaluate |
| 195 | + eva_negative_data = self.eva_negative_data |
| 196 | + total_user_list = self.total_user_list |
| 197 | + index = self.index |
| 198 | + terminal_flag = 1 |
| 199 | + total_users = len(total_user_list) |
| 200 | + user_list = [] |
| 201 | + item_list = [] |
| 202 | + if index + batch_size < total_users: |
| 203 | + batch_user_list = total_user_list[index:index+batch_size] |
| 204 | + self.index = index + batch_size |
| 205 | + else: |
| 206 | + terminal_flag = 0 |
| 207 | + batch_user_list = total_user_list[index:total_users] |
| 208 | + self.index = 0 |
| 209 | + for u in batch_user_list: |
| 210 | + user_list.extend([u]*num_evaluate) |
| 211 | + item_list.extend(eva_negative_data[u]) |
| 212 | + self.eva_user_list = np.reshape(user_list, [-1, 1]) |
| 213 | + self.eva_item_list = np.reshape(item_list, [-1, 1]) |
| 214 | + return batch_user_list, terminal_flag |
| 215 | + |
| 216 | +##################################################### Supplement for Sparse Computation ############################################ |
| 217 | + def readSocialNeighbors(self, friends_flag=1): |
| 218 | + social_neighbors = defaultdict(set) |
| 219 | + links_file = open(self.conf.links_filename) |
| 220 | + for _, line in enumerate(links_file): |
| 221 | + tmp = line.split('\t') |
| 222 | + u1, u2 = int(tmp[0]), int(tmp[1]) |
| 223 | + social_neighbors[u1].add(u2) |
| 224 | + if friends_flag == 1: |
| 225 | + social_neighbors[u2].add(u1) |
| 226 | + self.social_neighbors = social_neighbors |
| 227 | + |
| 228 | + ''' |
| 229 | + Generate Social Neighbors Sparse Matrix Indices and Values |
| 230 | + ''' |
| 231 | + def generateSocialNeighborsSparseMatrix(self): |
| 232 | + social_neighbors = self.social_neighbors |
| 233 | + social_neighbors_indices_list = [] |
| 234 | + social_neighbors_values_list = [] |
| 235 | + social_neighbors_dict = defaultdict(list) |
| 236 | + for u in social_neighbors: |
| 237 | + social_neighbors_dict[u] = sorted(social_neighbors[u]) |
| 238 | + |
| 239 | + user_list = sorted(list(social_neighbors.keys())) |
| 240 | + for user in user_list: |
| 241 | + for friend in social_neighbors_dict[user]: |
| 242 | + social_neighbors_indices_list.append([user, friend]) |
| 243 | + social_neighbors_values_list.append(1.0/len(social_neighbors_dict[user])) |
| 244 | + self.social_neighbors_indices_list = np.array(social_neighbors_indices_list).astype(np.int64) |
| 245 | + self.social_neighbors_values_list = np.array(social_neighbors_values_list).astype(np.float32) |
| 246 | + |
| 247 | + ''' |
| 248 | + Generate Consumed Items Sparse Matrix Indices and Values |
| 249 | + ''' |
| 250 | + def generateConsumedItemsSparseMatrix(self): |
| 251 | + positive_data = self.positive_data |
| 252 | + consumed_items_indices_list = [] |
| 253 | + consumed_items_values_list = [] |
| 254 | + consumed_items_dict = defaultdict(list) |
| 255 | + for u in positive_data: |
| 256 | + consumed_items_dict[u] = sorted(positive_data[u]) |
| 257 | + user_list = sorted(list(positive_data.keys())) |
| 258 | + for u in user_list: |
| 259 | + for i in consumed_items_dict[u]: |
| 260 | + consumed_items_indices_list.append([u, i]) |
| 261 | + consumed_items_values_list.append(1.0/len(consumed_items_dict[u])) |
| 262 | + self.consumed_items_indices_list = np.array(consumed_items_indices_list).astype(np.int64) |
| 263 | + self.consumed_items_values_list = np.array(consumed_items_values_list).astype(np.float32) |
0 commit comments