|
| 1 | +from __future__ import absolute_import |
| 2 | +from __future__ import division |
| 3 | +from __future__ import print_function |
| 4 | + |
| 5 | +import os |
| 6 | +import argparse |
| 7 | +import paddle.v2.fluid as fluid |
| 8 | +import data_utils.augmentor.trans_mean_variance_norm as trans_mean_variance_norm |
| 9 | +import data_utils.augmentor.trans_add_delta as trans_add_delta |
| 10 | +import data_utils.augmentor.trans_splice as trans_splice |
| 11 | +import data_utils.data_reader as reader |
| 12 | +from data_utils.util import lodtensor_to_ndarray |
| 13 | + |
| 14 | + |
| 15 | +def parse_args(): |
| 16 | + parser = argparse.ArgumentParser("Inference for stacked LSTMP model.") |
| 17 | + parser.add_argument( |
| 18 | + '--batch_size', |
| 19 | + type=int, |
| 20 | + default=32, |
| 21 | + help='The sequence number of a batch data. (default: %(default)d)') |
| 22 | + parser.add_argument( |
| 23 | + '--device', |
| 24 | + type=str, |
| 25 | + default='GPU', |
| 26 | + choices=['CPU', 'GPU'], |
| 27 | + help='The device type. (default: %(default)s)') |
| 28 | + parser.add_argument( |
| 29 | + '--mean_var', |
| 30 | + type=str, |
| 31 | + default='data/global_mean_var_search26kHr', |
| 32 | + help="The path for feature's global mean and variance. " |
| 33 | + "(default: %(default)s)") |
| 34 | + parser.add_argument( |
| 35 | + '--infer_feature_lst', |
| 36 | + type=str, |
| 37 | + default='data/infer_feature.lst', |
| 38 | + help='The feature list path for inference. (default: %(default)s)') |
| 39 | + parser.add_argument( |
| 40 | + '--infer_label_lst', |
| 41 | + type=str, |
| 42 | + default='data/infer_label.lst', |
| 43 | + help='The label list path for inference. (default: %(default)s)') |
| 44 | + parser.add_argument( |
| 45 | + '--model_save_path', |
| 46 | + type=str, |
| 47 | + default='./checkpoints/deep_asr.pass_0.model/', |
| 48 | + help='The directory for saving model. (default: %(default)s)') |
| 49 | + args = parser.parse_args() |
| 50 | + return args |
| 51 | + |
| 52 | + |
| 53 | +def print_arguments(args): |
| 54 | + print('----------- Configuration Arguments -----------') |
| 55 | + for arg, value in sorted(vars(args).iteritems()): |
| 56 | + print('%s: %s' % (arg, value)) |
| 57 | + print('------------------------------------------------') |
| 58 | + |
| 59 | + |
| 60 | +def split_infer_result(infer_seq, lod): |
| 61 | + infer_batch = [] |
| 62 | + for i in xrange(0, len(lod[0]) - 1): |
| 63 | + infer_batch.append(infer_seq[lod[0][i]:lod[0][i + 1]]) |
| 64 | + return infer_batch |
| 65 | + |
| 66 | + |
| 67 | +def infer(args): |
| 68 | + """ Gets one batch of feature data and predicts labels for each sample. |
| 69 | + """ |
| 70 | + |
| 71 | + if not os.path.exists(args.model_save_path): |
| 72 | + raise IOError("Invalid model path!") |
| 73 | + |
| 74 | + place = fluid.CUDAPlace(0) if args.device == 'GPU' else fluid.CPUPlace() |
| 75 | + exe = fluid.Executor(place) |
| 76 | + |
| 77 | + # load model |
| 78 | + [infer_program, feed_dict, |
| 79 | + fetch_targets] = fluid.io.load_inference_model(args.model_save_path, exe) |
| 80 | + |
| 81 | + ltrans = [ |
| 82 | + trans_add_delta.TransAddDelta(2, 2), |
| 83 | + trans_mean_variance_norm.TransMeanVarianceNorm(args.mean_var), |
| 84 | + trans_splice.TransSplice() |
| 85 | + ] |
| 86 | + |
| 87 | + infer_data_reader = reader.DataReader(args.infer_feature_lst, |
| 88 | + args.infer_label_lst) |
| 89 | + infer_data_reader.set_transformers(ltrans) |
| 90 | + |
| 91 | + feature_t = fluid.LoDTensor() |
| 92 | + one_batch = infer_data_reader.batch_iterator(args.batch_size, 1).next() |
| 93 | + (features, labels, lod) = one_batch |
| 94 | + feature_t.set(features, place) |
| 95 | + feature_t.set_lod([lod]) |
| 96 | + |
| 97 | + results = exe.run(infer_program, |
| 98 | + feed={feed_dict[0]: feature_t}, |
| 99 | + fetch_list=fetch_targets, |
| 100 | + return_numpy=False) |
| 101 | + |
| 102 | + probs, lod = lodtensor_to_ndarray(results[0]) |
| 103 | + preds = probs.argmax(axis=1) |
| 104 | + infer_batch = split_infer_result(preds, lod) |
| 105 | + for index, sample in enumerate(infer_batch): |
| 106 | + print("result %d: " % index, sample, '\n') |
| 107 | + |
| 108 | + |
| 109 | +if __name__ == '__main__': |
| 110 | + args = parse_args() |
| 111 | + print_arguments(args) |
| 112 | + infer(args) |
0 commit comments