|
| 1 | +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import math |
| 16 | +import warnings |
| 17 | + |
| 18 | +import numpy as np |
| 19 | +from paddle import _C_ops |
| 20 | + |
| 21 | +from ..fluid import core |
| 22 | +from ..fluid.data_feeder import (check_dtype, check_type, |
| 23 | + check_variable_and_dtype, convert_dtype) |
| 24 | +from ..fluid.framework import in_dygraph_mode |
| 25 | +from ..fluid.layers import (control_flow, elementwise_add, elementwise_div, |
| 26 | + elementwise_mul, elementwise_sub, nn, ops, tensor) |
| 27 | +from ..tensor import arange, concat, gather_nd, multinomial |
| 28 | +from .distribution import Distribution |
| 29 | + |
| 30 | + |
| 31 | +class Categorical(Distribution): |
| 32 | + r""" |
| 33 | + Categorical distribution is a discrete probability distribution that |
| 34 | + describes the possible results of a random variable that can take on |
| 35 | + one of K possible categories, with the probability of each category |
| 36 | + separately specified. |
| 37 | +
|
| 38 | + The probability mass function (pmf) is: |
| 39 | +
|
| 40 | + .. math:: |
| 41 | +
|
| 42 | + pmf(k; p_i) = \prod_{i=1}^{k} p_i^{[x=i]} |
| 43 | +
|
| 44 | + In the above equation: |
| 45 | +
|
| 46 | + * :math:`[x=i]` : it evaluates to 1 if :math:`x==i` , 0 otherwise. |
| 47 | +
|
| 48 | + Args: |
| 49 | + logits(list|tuple|numpy.ndarray|Tensor): The logits input of categorical distribution. The data type is float32 or float64. |
| 50 | + name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. |
| 51 | +
|
| 52 | + Examples: |
| 53 | + .. code-block:: python |
| 54 | +
|
| 55 | + import paddle |
| 56 | + from paddle.distribution import Categorical |
| 57 | +
|
| 58 | + paddle.seed(100) # on CPU device |
| 59 | + x = paddle.rand([6]) |
| 60 | + print(x) |
| 61 | + # [0.5535528 0.20714243 0.01162981 |
| 62 | + # 0.51577556 0.36369765 0.2609165 ] |
| 63 | +
|
| 64 | + paddle.seed(200) # on CPU device |
| 65 | + y = paddle.rand([6]) |
| 66 | + print(y) |
| 67 | + # [0.77663314 0.90824795 0.15685187 |
| 68 | + # 0.04279523 0.34468332 0.7955718 ] |
| 69 | +
|
| 70 | + cat = Categorical(x) |
| 71 | + cat2 = Categorical(y) |
| 72 | +
|
| 73 | + paddle.seed(1000) # on CPU device |
| 74 | + cat.sample([2,3]) |
| 75 | + # [[0, 0, 5], |
| 76 | + # [3, 4, 5]] |
| 77 | +
|
| 78 | + cat.entropy() |
| 79 | + # [1.77528] |
| 80 | +
|
| 81 | + cat.kl_divergence(cat2) |
| 82 | + # [0.071952] |
| 83 | +
|
| 84 | + value = paddle.to_tensor([2,1,3]) |
| 85 | + cat.probs(value) |
| 86 | + # [0.00608027 0.108298 0.269656] |
| 87 | +
|
| 88 | + cat.log_prob(value) |
| 89 | + # [-5.10271 -2.22287 -1.31061] |
| 90 | +
|
| 91 | + """ |
| 92 | + |
| 93 | + def __init__(self, logits, name=None): |
| 94 | + """ |
| 95 | + Args: |
| 96 | + logits(list|tuple|numpy.ndarray|Tensor): The logits input of categorical distribution. The data type is float32 or float64. |
| 97 | + name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. |
| 98 | + """ |
| 99 | + if not in_dygraph_mode(): |
| 100 | + check_type(logits, 'logits', |
| 101 | + (np.ndarray, tensor.Variable, list, tuple), |
| 102 | + 'Categorical') |
| 103 | + |
| 104 | + self.name = name if name is not None else 'Categorical' |
| 105 | + self.dtype = 'float32' |
| 106 | + |
| 107 | + if self._validate_args(logits): |
| 108 | + self.logits = logits |
| 109 | + self.dtype = convert_dtype(logits.dtype) |
| 110 | + else: |
| 111 | + if isinstance(logits, np.ndarray) and str( |
| 112 | + logits.dtype) in ['float32', 'float64']: |
| 113 | + self.dtype = logits.dtype |
| 114 | + self.logits = self._to_tensor(logits)[0] |
| 115 | + if self.dtype != convert_dtype(self.logits.dtype): |
| 116 | + self.logits = tensor.cast(self.logits, dtype=self.dtype) |
| 117 | + |
| 118 | + def sample(self, shape): |
| 119 | + """Generate samples of the specified shape. |
| 120 | +
|
| 121 | + Args: |
| 122 | + shape (list): Shape of the generated samples. |
| 123 | +
|
| 124 | + Returns: |
| 125 | + Tensor: A tensor with prepended dimensions shape. |
| 126 | + |
| 127 | + Examples: |
| 128 | + .. code-block:: python |
| 129 | +
|
| 130 | + import paddle |
| 131 | + from paddle.distribution import Categorical |
| 132 | +
|
| 133 | + paddle.seed(100) # on CPU device |
| 134 | + x = paddle.rand([6]) |
| 135 | + print(x) |
| 136 | + # [0.5535528 0.20714243 0.01162981 |
| 137 | + # 0.51577556 0.36369765 0.2609165 ] |
| 138 | +
|
| 139 | + cat = Categorical(x) |
| 140 | +
|
| 141 | + paddle.seed(1000) # on CPU device |
| 142 | + cat.sample([2,3]) |
| 143 | + # [[0, 0, 5], |
| 144 | + # [3, 4, 5]] |
| 145 | +
|
| 146 | + """ |
| 147 | + name = self.name + '_sample' |
| 148 | + if not in_dygraph_mode(): |
| 149 | + check_type(shape, 'shape', (list), 'sample') |
| 150 | + |
| 151 | + num_samples = np.prod(np.array(shape)) |
| 152 | + |
| 153 | + logits_shape = list(self.logits.shape) |
| 154 | + if len(logits_shape) > 1: |
| 155 | + sample_shape = shape + logits_shape[:-1] |
| 156 | + logits = nn.reshape(self.logits, |
| 157 | + [np.prod(logits_shape[:-1]), logits_shape[-1]]) |
| 158 | + else: |
| 159 | + sample_shape = shape |
| 160 | + logits = self.logits |
| 161 | + |
| 162 | + sample_index = multinomial(logits, num_samples, True) |
| 163 | + return nn.reshape(sample_index, sample_shape, name=name) |
| 164 | + |
| 165 | + def kl_divergence(self, other): |
| 166 | + """The KL-divergence between two Categorical distributions. |
| 167 | +
|
| 168 | + Args: |
| 169 | + other (Categorical): instance of Categorical. The data type is float32. |
| 170 | +
|
| 171 | + Returns: |
| 172 | + Tensor: kl-divergence between two Categorical distributions. |
| 173 | + |
| 174 | + Examples: |
| 175 | + .. code-block:: python |
| 176 | +
|
| 177 | + import paddle |
| 178 | + from paddle.distribution import Categorical |
| 179 | +
|
| 180 | + paddle.seed(100) # on CPU device |
| 181 | + x = paddle.rand([6]) |
| 182 | + print(x) |
| 183 | + # [0.5535528 0.20714243 0.01162981 |
| 184 | + # 0.51577556 0.36369765 0.2609165 ] |
| 185 | +
|
| 186 | + paddle.seed(200) # on CPU device |
| 187 | + y = paddle.rand([6]) |
| 188 | + print(y) |
| 189 | + # [0.77663314 0.90824795 0.15685187 |
| 190 | + # 0.04279523 0.34468332 0.7955718 ] |
| 191 | +
|
| 192 | + cat = Categorical(x) |
| 193 | + cat2 = Categorical(y) |
| 194 | +
|
| 195 | + cat.kl_divergence(cat2) |
| 196 | + # [0.071952] |
| 197 | +
|
| 198 | + """ |
| 199 | + name = self.name + '_kl_divergence' |
| 200 | + if not in_dygraph_mode(): |
| 201 | + check_type(other, 'other', Categorical, 'kl_divergence') |
| 202 | + |
| 203 | + logits = self.logits - nn.reduce_max(self.logits, dim=-1, keep_dim=True) |
| 204 | + other_logits = other.logits - nn.reduce_max( |
| 205 | + other.logits, dim=-1, keep_dim=True) |
| 206 | + e_logits = ops.exp(logits) |
| 207 | + other_e_logits = ops.exp(other_logits) |
| 208 | + z = nn.reduce_sum(e_logits, dim=-1, keep_dim=True) |
| 209 | + other_z = nn.reduce_sum(other_e_logits, dim=-1, keep_dim=True) |
| 210 | + prob = e_logits / z |
| 211 | + kl = nn.reduce_sum( |
| 212 | + prob * (logits - nn.log(z) - other_logits + nn.log(other_z)), |
| 213 | + dim=-1, |
| 214 | + keep_dim=True, |
| 215 | + name=name) |
| 216 | + |
| 217 | + return kl |
| 218 | + |
| 219 | + def entropy(self): |
| 220 | + """Shannon entropy in nats. |
| 221 | +
|
| 222 | + Returns: |
| 223 | + Tensor: Shannon entropy of Categorical distribution. The data type is float32. |
| 224 | + |
| 225 | + Examples: |
| 226 | + .. code-block:: python |
| 227 | +
|
| 228 | + import paddle |
| 229 | + from paddle.distribution import Categorical |
| 230 | +
|
| 231 | + paddle.seed(100) # on CPU device |
| 232 | + x = paddle.rand([6]) |
| 233 | + print(x) |
| 234 | + # [0.5535528 0.20714243 0.01162981 |
| 235 | + # 0.51577556 0.36369765 0.2609165 ] |
| 236 | +
|
| 237 | + cat = Categorical(x) |
| 238 | +
|
| 239 | + cat.entropy() |
| 240 | + # [1.77528] |
| 241 | +
|
| 242 | + """ |
| 243 | + name = self.name + '_entropy' |
| 244 | + logits = self.logits - nn.reduce_max(self.logits, dim=-1, keep_dim=True) |
| 245 | + e_logits = ops.exp(logits) |
| 246 | + z = nn.reduce_sum(e_logits, dim=-1, keep_dim=True) |
| 247 | + prob = e_logits / z |
| 248 | + |
| 249 | + neg_entropy = nn.reduce_sum( |
| 250 | + prob * (logits - nn.log(z)), dim=-1, keep_dim=True) |
| 251 | + entropy = nn.scale(neg_entropy, scale=-1.0, name=name) |
| 252 | + return entropy |
| 253 | + |
| 254 | + def probs(self, value): |
| 255 | + """Probabilities of the given category (``value``). |
| 256 | +
|
| 257 | + If ``logits`` is 2-D or higher dimension, the last dimension will be regarded as |
| 258 | + category, and the others represents the different distributions. |
| 259 | + At the same time, if ``vlaue`` is 1-D Tensor, ``value`` will be broadcast to the |
| 260 | + same number of distributions as ``logits``. |
| 261 | + If ``value`` is not 1-D Tensor, ``value`` should have the same number distributions |
| 262 | + with ``logits. That is, ``value[:-1] = logits[:-1]``. |
| 263 | +
|
| 264 | + Args: |
| 265 | + value (Tensor): The input tensor represents the selected category index. |
| 266 | +
|
| 267 | + Returns: |
| 268 | + Tensor: probability according to the category index. |
| 269 | + |
| 270 | + Examples: |
| 271 | + .. code-block:: python |
| 272 | +
|
| 273 | + import paddle |
| 274 | + from paddle.distribution import Categorical |
| 275 | +
|
| 276 | + paddle.seed(100) # on CPU device |
| 277 | + x = paddle.rand([6]) |
| 278 | + print(x) |
| 279 | + # [0.5535528 0.20714243 0.01162981 |
| 280 | + # 0.51577556 0.36369765 0.2609165 ] |
| 281 | +
|
| 282 | + cat = Categorical(x) |
| 283 | +
|
| 284 | + value = paddle.to_tensor([2,1,3]) |
| 285 | + cat.probs(value) |
| 286 | + # [0.00608027 0.108298 0.269656] |
| 287 | +
|
| 288 | + """ |
| 289 | + name = self.name + '_probs' |
| 290 | + |
| 291 | + dist_sum = nn.reduce_sum(self.logits, dim=-1, keep_dim=True) |
| 292 | + prob = self.logits / dist_sum |
| 293 | + |
| 294 | + shape = list(prob.shape) |
| 295 | + value_shape = list(value.shape) |
| 296 | + if len(shape) == 1: |
| 297 | + num_value_in_one_dist = np.prod(value_shape) |
| 298 | + index_value = nn.reshape(value, [num_value_in_one_dist, 1]) |
| 299 | + index = index_value |
| 300 | + else: |
| 301 | + num_dist = np.prod(shape[:-1]) |
| 302 | + num_value_in_one_dist = value_shape[-1] |
| 303 | + prob = nn.reshape(prob, [num_dist, shape[-1]]) |
| 304 | + if len(value_shape) == 1: |
| 305 | + value = nn.expand(value, [num_dist]) |
| 306 | + value_shape = shape[:-1] + value_shape |
| 307 | + index_value = nn.reshape(value, [num_dist, -1, 1]) |
| 308 | + if shape[:-1] != value_shape[:-1]: |
| 309 | + raise ValueError( |
| 310 | + "shape of value {} must match shape of logits {}".format( |
| 311 | + str(value_shape[:-1]), str(shape[:-1]))) |
| 312 | + |
| 313 | + index_prefix = nn.unsqueeze( |
| 314 | + arange( |
| 315 | + num_dist, dtype=index_value.dtype), axes=-1) |
| 316 | + index_prefix = nn.expand(index_prefix, [1, num_value_in_one_dist]) |
| 317 | + index_prefix = nn.unsqueeze(index_prefix, axes=-1) |
| 318 | + |
| 319 | + if index_value.dtype != index_prefix.dtype: |
| 320 | + tensor.cast(index_prefix, dtype=index_value.dtype) |
| 321 | + index = concat([index_prefix, index_value], axis=-1) |
| 322 | + |
| 323 | + # value is the category index to search for the corresponding probability. |
| 324 | + select_prob = gather_nd(prob, index) |
| 325 | + return nn.reshape(select_prob, value_shape, name=name) |
| 326 | + |
| 327 | + def log_prob(self, value): |
| 328 | + """Log probabilities of the given category. Refer to ``probs`` method. |
| 329 | +
|
| 330 | + Args: |
| 331 | + value (Tensor): The input tensor represents the selected category index. |
| 332 | +
|
| 333 | + Returns: |
| 334 | + Tensor: Log probability. |
| 335 | + |
| 336 | + Examples: |
| 337 | + .. code-block:: python |
| 338 | +
|
| 339 | + import paddle |
| 340 | + from paddle.distribution import Categorical |
| 341 | +
|
| 342 | + paddle.seed(100) # on CPU device |
| 343 | + x = paddle.rand([6]) |
| 344 | + print(x) |
| 345 | + # [0.5535528 0.20714243 0.01162981 |
| 346 | + # 0.51577556 0.36369765 0.2609165 ] |
| 347 | +
|
| 348 | + cat = Categorical(x) |
| 349 | +
|
| 350 | + value = paddle.to_tensor([2,1,3]) |
| 351 | + cat.log_prob(value) |
| 352 | + # [-5.10271 -2.22287 -1.31061] |
| 353 | +
|
| 354 | + """ |
| 355 | + name = self.name + '_log_prob' |
| 356 | + |
| 357 | + return nn.log(self.probs(value), name=name) |
0 commit comments