@@ -160,14 +160,14 @@ def yolo_loss(
160160 downsample_ratio (int): The downsample ratio from network input to YOLOv3 
161161 loss input, so 32, 16, 8 should be set for the 
162162 first, second, and thrid YOLOv3 loss operators. 
163-  name (string): The default value is None. Normally there is no need 
164-  for user to set this property. For more information, 
165-  please refer to :ref:`api_guide_Name` 
166-  gt_score (Tensor): mixup score of ground truth boxes, should be in shape 
163+  gt_score (Tensor, optional): mixup score of ground truth boxes, should be in shape 
167164 of [N, B]. Default None. 
168-  use_label_smooth (bool): Whether to use label smooth. Default True. 
169-  scale_x_y (float): Scale the center point of decoded bounding box. 
170-  Default 1.0 
165+  use_label_smooth (bool, optional): Whether to use label smooth. Default True. 
166+  name (str, optional): The default value is None. Normally there is no need 
167+  for user to set this property. For more information, 
168+  please refer to :ref:`api_guide_Name` 
169+  scale_x_y (float, optional): Scale the center point of decoded bounding box. 
170+  Default 1.0. 
171171
172172 Returns: 
173173 Tensor: A 1-D tensor with shape [N], the value of yolov3 loss 
@@ -340,14 +340,6 @@ def yolo_box(
340340 score_{pred} = score_{conf} * score_{class} 
341341 $$ 
342342
343-  where the confidence scores follow the formula bellow 
344- 
345-  .. math:: 
346- 
347-  score_{conf} = \begin{case} 
348-  obj, \text{if } iou_aware == false \\ 
349-  obj^{1 - iou_aware_factor} * iou^{iou_aware_factor}, \text{otherwise} 
350-  \end{case} 
351343
352344 Args: 
353345 x (Tensor): The input tensor of YoloBox operator is a 4-D tensor with 
@@ -369,15 +361,14 @@ def yolo_box(
369361 :attr:`yolo_box` operator input, so 32, 16, 8 
370362 should be set for the first, second, and thrid 
371363 :attr:`yolo_box` layer. 
372-  clip_bbox (bool): Whether clip output bonding box in :attr:`img_size` 
364+  clip_bbox (bool, optional ): Whether clip output bonding box in :attr:`img_size` 
373365 boundary. Default true. 
374-  scale_x_y (float): Scale the center point of decoded bounding box. 
375-  Default 1.0 
376-  name (string): The default value is None. Normally there is no need 
377-  for user to set this property. For more information, 
378-  please refer to :ref:`api_guide_Name` 
379-  iou_aware (bool): Whether use iou aware. Default false 
380-  iou_aware_factor (float): iou aware factor. Default 0.5 
366+  name (str, optional): The default value is None. Normally there is no need 
367+  for user to set this property. For more information, 
368+  please refer to :ref:`api_guide_Name`. 
369+  scale_x_y (float, optional): Scale the center point of decoded bounding box. Default 1.0 
370+  iou_aware (bool, optional): Whether use iou aware. Default false. 
371+  iou_aware_factor (float, optional): iou aware factor. Default 0.5. 
381372
382373 Returns: 
383374 Tensor: A 3-D tensor with shape [N, M, 4], the coordinates of boxes, 
@@ -902,8 +893,8 @@ def deform_conv2d(
902893
903894 .. math:: 
904895
905-  H_{out}&= \\ frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\ \\ 
906-  W_{out}&= \\ frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1 
896+  H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\ 
897+  W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1 
907898
908899 Args: 
909900 x (Tensor): The input image with [N, C, H, W] format. A Tensor with type 
@@ -913,31 +904,31 @@ def deform_conv2d(
913904 weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is 
914905 the number of output channels, g is the number of groups, kH is the filter's 
915906 height, kW is the filter's width. 
916-  bias (Tensor, optional): The bias with shape [M,]. 
907+  bias (Tensor, optional): The bias with shape [M,]. Default: None.  
917908 stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must 
918909 contain two integers, (stride_H, stride_W). Otherwise, the 
919-  stride_H = stride_W = stride. Default: stride =  1. 
910+  stride_H = stride_W = stride. Default: 1. 
920911 padding (int|list|tuple, optional): The padding size. If padding is a list/tuple, it must 
921912 contain two integers, (padding_H, padding_W). Otherwise, the 
922-  padding_H = padding_W = padding. Default: padding =  0. 
913+  padding_H = padding_W = padding. Default: 0. 
923914 dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must 
924915 contain two integers, (dilation_H, dilation_W). Otherwise, the 
925-  dilation_H = dilation_W = dilation. Default: dilation =  1. 
916+  dilation_H = dilation_W = dilation. Default: 1. 
926917 deformable_groups (int): The number of deformable group partitions. 
927-  Default: deformable_groups =  1. 
918+  Default: 1. 
928919 groups (int, optonal): The groups number of the deformable conv layer. According to 
929920 grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2, 
930921 the first half of the filters is only connected to the first half 
931922 of the input channels, while the second half of the filters is only 
932-  connected to the second half of the input channels. Default: groups= 1. 
923+  connected to the second half of the input channels. Default: 1. 
933924 mask (Tensor, optional): The input mask of deformable convolution layer. 
934925 A Tensor with type float32, float64. It should be None when you use 
935-  deformable convolution v1. 
926+  deformable convolution v1. Default: None.  
936927 name(str, optional): For details, please refer to :ref:`api_guide_Name`. 
937928 Generally, no setting is required. Default: None. 
938929 Returns: 
939-  Tensor: The tensor variable  storing the deformable convolution \ 
940-   result.  A Tensor with type float32, float64. 
930+  Tensor: 4-D Tensor  storing the deformable convolution result. \ 
931+  A Tensor with type float32, float64. 
941932
942933 Examples: 
943934 .. code-block:: python 
@@ -1145,7 +1136,7 @@ class DeformConv2D(Layer):
11451136 dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must 
11461137 contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the 
11471138 dilation_D = dilation_H = dilation_W = dilation. The default value is 1. 
1148-  deformable_groups (int): The number of deformable group partitions. 
1139+  deformable_groups (int, optional ): The number of deformable group partitions. 
11491140 Default: deformable_groups = 1. 
11501141 groups(int, optional): The groups number of the Conv3D Layer. According to grouped 
11511142 convolution in Alex Krizhevsky's Deep CNN paper: when group=2, 
@@ -1504,7 +1495,7 @@ def decode_jpeg(x, mode='unchanged', name=None):
15041495 Args: 
15051496 x (Tensor): A one dimensional uint8 tensor containing the raw bytes 
15061497 of the JPEG image. 
1507-  mode (str): The read mode used for optionally converting the image. 
1498+  mode (str, optional ): The read mode used for optionally converting the image. 
15081499 Default: 'unchanged'. 
15091500 name (str, optional): The default value is None. Normally there is no 
15101501 need for user to set this property. For more information, please 
@@ -1694,10 +1685,10 @@ def roi_pool(x, boxes, boxes_num, output_size, spatial_scale=1.0, name=None):
16941685 2D-Tensor with the shape of [num_boxes,4]. 
16951686 Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates, 
16961687 and (x2, y2) is the bottom right coordinates. 
1697-  boxes_num (Tensor): the number of RoIs in each image, data type is int32. Default: None  
1688+  boxes_num (Tensor): the number of RoIs in each image, data type is int32. 
16981689 output_size (int or tuple[int, int]): the pooled output size(h, w), data type is int32. If int, h and w are both equal to output_size. 
1699-  spatial_scale (float, optional): multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0 
1700-  name(str, optional): for detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. 
1690+  spatial_scale (float, optional): multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0.  
1691+  name(str, optional): for detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. Default: None.  
17011692
17021693 Returns: 
17031694 pool_out (Tensor): the pooled feature, 4D-Tensor with the shape of [num_boxes, C, output_size[0], output_size[1]]. 
@@ -1871,10 +1862,10 @@ def roi_align(
18711862 Default: True. 
18721863 name(str, optional): For detailed information, please refer to : 
18731864 ref:`api_guide_Name`. Usually name is no need to set and None by 
1874-  default. 
1865+  default. Default: None.  
18751866
18761867 Returns: 
1877-  The output of ROIAlignOp is a 4-D tensor with shape (num_boxes, 
1868+  The output of ROIAlignOp is a 4-D tensor with shape (num_boxes,\  
18781869  channels, pooled_h, pooled_w). The data type is float32 or float64.
18791870
18801871 Examples: 
@@ -1971,10 +1962,10 @@ class RoIAlign(Layer):
19711962 data type is int32. If int, h and w are both equal to output_size. 
19721963 spatial_scale (float32, optional): Multiplicative spatial scale factor 
19731964 to translate ROI coords from their input scale to the scale used 
1974-  when pooling. Default: 1.0 
1965+  when pooling. Default: 1.0.  
19751966
19761967 Returns: 
1977-  The output of ROIAlign operator is a 4-D tensor with 
1968+  The output of ROIAlign operator is a 4-D tensor with  \  
19781969  shape (num_boxes, channels, pooled_h, pooled_w).
19791970
19801971 Examples: 
0 commit comments