Skip to content

Commit df03343

Browse files
committed
skin error config
1 parent dc1dd41 commit df03343

File tree

3 files changed

+117
-1
lines changed

3 files changed

+117
-1
lines changed

report/big_tensor_gpu/error_config.txt

Lines changed: 40 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -8224,6 +8224,10 @@ paddle.nn.functional.interpolate(Tensor([107374183, 10, 4],"float32"), size=None
82248224
paddle.nn.functional.interpolate(Tensor([107374183, 10, 4],"float32"), size=None, scale_factor=list[0.7,], mode="linear", align_corners=False, align_mode=1, data_format="NWC", name=None, )
82258225
paddle.nn.functional.interpolate(Tensor([107374183, 10, 4],"float32"), size=None, scale_factor=list[0.7,], mode="linear", align_corners=True, align_mode=0, data_format="NWC", name=None, )
82268226
paddle.nn.functional.interpolate(Tensor([107374183, 10, 4],"float32"), size=None, scale_factor=list[0.7,], mode="linear", align_corners=True, align_mode=1, data_format="NWC", name=None, )
8227+
paddle.nn.functional.interpolate(Tensor([107374183, 10, 4],"float32"), size=None, scale_factor=list[0.7999999999999999,], mode="linear", align_corners=False, align_mode=0, data_format="NWC", name=None, )
8228+
paddle.nn.functional.interpolate(Tensor([107374183, 10, 4],"float32"), size=None, scale_factor=list[0.7999999999999999,], mode="linear", align_corners=False, align_mode=1, data_format="NWC", name=None, )
8229+
paddle.nn.functional.interpolate(Tensor([107374183, 10, 4],"float32"), size=None, scale_factor=list[0.7999999999999999,], mode="linear", align_corners=True, align_mode=0, data_format="NWC", name=None, )
8230+
paddle.nn.functional.interpolate(Tensor([107374183, 10, 4],"float32"), size=None, scale_factor=list[0.7999999999999999,], mode="linear", align_corners=True, align_mode=1, data_format="NWC", name=None, )
82278231
paddle.nn.functional.interpolate(Tensor([107374183, 10, 4],"float32"), size=None, scale_factor=list[0.8999999999999999,], mode="linear", align_corners=False, align_mode=0, data_format="NWC", name=None, )
82288232
paddle.nn.functional.interpolate(Tensor([107374183, 10, 4],"float32"), size=None, scale_factor=list[0.8999999999999999,], mode="linear", align_corners=False, align_mode=1, data_format="NWC", name=None, )
82298233
paddle.nn.functional.interpolate(Tensor([107374183, 10, 4],"float32"), size=None, scale_factor=list[0.8999999999999999,], mode="linear", align_corners=True, align_mode=0, data_format="NWC", name=None, )
@@ -8349,6 +8353,12 @@ paddle.nn.functional.interpolate(Tensor([2, 10, 10, 21474837],"float16"), size=l
83498353
paddle.nn.functional.interpolate(Tensor([2, 10, 10, 21474837],"float16"), size=list[2,13,], scale_factor=None, mode="bicubic", align_corners=True, align_mode=1, data_format="NHWC", name=None, )
83508354
paddle.nn.functional.interpolate(Tensor([2, 10, 10, 5368710, 4],"float16"), size=list[4,2,3,], scale_factor=None, mode="trilinear", align_corners=False, align_mode=0, data_format="NDHWC", name=None, )
83518355
paddle.nn.functional.interpolate(Tensor([2, 10, 10, 5368710, 4],"float16"), size=list[4,2,3,], scale_factor=None, mode="trilinear", align_corners=True, align_mode=1, data_format="NDHWC", name=None, )
8356+
paddle.nn.functional.interpolate(Tensor([2, 10, 107374183, 2],"float16"), size=None, scale_factor=list[0.6,0.6,], mode="bicubic", align_corners=False, align_mode=0, data_format="NHWC", name=None, )
8357+
paddle.nn.functional.interpolate(Tensor([2, 10, 107374183, 2],"float16"), size=None, scale_factor=list[0.6,0.6,], mode="bicubic", align_corners=True, align_mode=1, data_format="NHWC", name=None, )
8358+
paddle.nn.functional.interpolate(Tensor([2, 10, 107374183, 2],"float16"), size=None, scale_factor=list[0.6,0.6,], mode="bilinear", align_corners=False, align_mode=0, data_format="NHWC", name=None, )
8359+
paddle.nn.functional.interpolate(Tensor([2, 10, 107374183, 2],"float16"), size=None, scale_factor=list[0.6,0.6,], mode="bilinear", align_corners=True, align_mode=1, data_format="NHWC", name=None, )
8360+
paddle.nn.functional.interpolate(Tensor([2, 10, 107374183, 2],"float16"), size=None, scale_factor=list[0.6,0.6,], mode="nearest", align_corners=False, align_mode=0, data_format="NHWC", name=None, )
8361+
paddle.nn.functional.interpolate(Tensor([2, 10, 107374183, 2],"float16"), size=None, scale_factor=list[0.6,0.6,], mode="nearest", align_corners=False, align_mode=1, data_format="NHWC", name=None, )
83528362
paddle.nn.functional.interpolate(Tensor([2, 10, 107374183, 2],"float16"), size=list[13,13,], scale_factor=None, mode="nearest", align_corners=False, align_mode=0, data_format="NHWC", name=None, )
83538363
paddle.nn.functional.interpolate(Tensor([2, 10, 107374183, 2],"float16"), size=list[13,13,], scale_factor=None, mode="nearest", align_corners=False, align_mode=1, data_format="NHWC", name=None, )
83548364
paddle.nn.functional.interpolate(Tensor([2, 10, 107374183, 2],"float16"), size=list[13,2,], scale_factor=None, mode="nearest", align_corners=False, align_mode=0, data_format="NHWC", name=None, )
@@ -8376,6 +8386,10 @@ paddle.nn.functional.interpolate(Tensor([2, 10, 107374183, 2],"float16"), size=l
83768386
paddle.nn.functional.interpolate(Tensor([2, 10, 107374183, 2],"float16"), size=list[26,22,], scale_factor=None, mode="bilinear", align_corners=True, align_mode=1, data_format="NHWC", name=None, )
83778387
paddle.nn.functional.interpolate(Tensor([2, 10, 5368710, 10, 4],"float16"), size=list[4,2,3,], scale_factor=None, mode="trilinear", align_corners=False, align_mode=0, data_format="NDHWC", name=None, )
83788388
paddle.nn.functional.interpolate(Tensor([2, 10, 5368710, 10, 4],"float16"), size=list[4,2,3,], scale_factor=None, mode="trilinear", align_corners=True, align_mode=1, data_format="NDHWC", name=None, )
8389+
paddle.nn.functional.interpolate(Tensor([2, 107374183, 10, 2],"float16"), size=None, scale_factor=list[0.6,0.6,], mode="bicubic", align_corners=False, align_mode=0, data_format="NHWC", name=None, )
8390+
paddle.nn.functional.interpolate(Tensor([2, 107374183, 10, 2],"float16"), size=None, scale_factor=list[0.6,0.6,], mode="bicubic", align_corners=True, align_mode=1, data_format="NHWC", name=None, )
8391+
paddle.nn.functional.interpolate(Tensor([2, 107374183, 10, 2],"float16"), size=None, scale_factor=list[0.6,0.6,], mode="bilinear", align_corners=False, align_mode=0, data_format="NHWC", name=None, )
8392+
paddle.nn.functional.interpolate(Tensor([2, 107374183, 10, 2],"float16"), size=None, scale_factor=list[0.6,0.6,], mode="bilinear", align_corners=True, align_mode=1, data_format="NHWC", name=None, )
83798393
paddle.nn.functional.interpolate(Tensor([2, 107374183, 10, 2],"float16"), size=list[13,13,], scale_factor=None, mode="nearest", align_corners=False, align_mode=0, data_format="NHWC", name=None, )
83808394
paddle.nn.functional.interpolate(Tensor([2, 107374183, 10, 2],"float16"), size=list[13,13,], scale_factor=None, mode="nearest", align_corners=False, align_mode=1, data_format="NHWC", name=None, )
83818395
paddle.nn.functional.interpolate(Tensor([2, 107374183, 10, 2],"float16"), size=list[13,2,], scale_factor=None, mode="nearest", align_corners=False, align_mode=0, data_format="NHWC", name=None, )
@@ -8442,10 +8456,24 @@ paddle.nn.functional.interpolate(Tensor([2, 1140851, 10, 10, 10],"float32"), siz
84428456
paddle.nn.functional.interpolate(Tensor([2, 1140851, 10, 10, 10],"float32"), size=None, scale_factor=list[0.6,0.6,0.6,], mode="trilinear", align_corners=True, align_mode=1, data_format="NCDHW", name=None, )
84438457
paddle.nn.functional.interpolate(Tensor([2, 1140851, 10, 10, 10],"float32"), size=list[2,2,2,], scale_factor=None, mode="trilinear", align_corners=False, align_mode=0, data_format="NCDHW", name=None, )
84448458
paddle.nn.functional.interpolate(Tensor([2, 1140851, 10, 10, 10],"float32"), size=list[2,2,2,], scale_factor=None, mode="trilinear", align_corners=True, align_mode=1, data_format="NCDHW", name=None, )
8459+
paddle.nn.functional.interpolate(Tensor([2, 2, 10, 57042535],"float32"), size=None, scale_factor=list[0.6,0.6,], mode="bicubic", align_corners=False, align_mode=0, data_format="NCHW", name=None, )
8460+
paddle.nn.functional.interpolate(Tensor([2, 2, 10, 57042535],"float32"), size=None, scale_factor=list[0.6,0.6,], mode="bicubic", align_corners=True, align_mode=1, data_format="NCHW", name=None, )
8461+
paddle.nn.functional.interpolate(Tensor([2, 2, 10, 57042535],"float32"), size=None, scale_factor=list[0.6,0.6,], mode="bilinear", align_corners=False, align_mode=0, data_format="NCHW", name=None, )
8462+
paddle.nn.functional.interpolate(Tensor([2, 2, 10, 57042535],"float32"), size=None, scale_factor=list[0.6,0.6,], mode="bilinear", align_corners=True, align_mode=1, data_format="NCHW", name=None, )
8463+
paddle.nn.functional.interpolate(Tensor([2, 2, 10, 57042535],"float32"), size=None, scale_factor=list[0.6,0.6,], mode="nearest", align_corners=False, align_mode=0, data_format="NCHW", name=None, )
8464+
paddle.nn.functional.interpolate(Tensor([2, 2, 10, 57042535],"float32"), size=None, scale_factor=list[0.6,0.6,], mode="nearest", align_corners=False, align_mode=1, data_format="NCHW", name=None, )
8465+
paddle.nn.functional.interpolate(Tensor([2, 2, 10, 57042535],"float32"), size=None, scale_factor=list[0.6,1.7999999999999998,], mode="bicubic", align_corners=False, align_mode=0, data_format="NCHW", name=None, )
8466+
paddle.nn.functional.interpolate(Tensor([2, 2, 10, 57042535],"float32"), size=None, scale_factor=list[0.6,1.7999999999999998,], mode="bicubic", align_corners=True, align_mode=1, data_format="NCHW", name=None, )
84458467
paddle.nn.functional.interpolate(Tensor([2, 2, 10, 57042535],"float32"), size=None, scale_factor=list[0.6,1.7999999999999998,], mode="bilinear", align_corners=False, align_mode=0, data_format="NCHW", name=None, )
84468468
paddle.nn.functional.interpolate(Tensor([2, 2, 10, 57042535],"float32"), size=None, scale_factor=list[0.6,1.7999999999999998,], mode="bilinear", align_corners=True, align_mode=1, data_format="NCHW", name=None, )
8469+
paddle.nn.functional.interpolate(Tensor([2, 2, 10, 57042535],"float32"), size=None, scale_factor=list[0.6,1.7999999999999998,], mode="nearest", align_corners=False, align_mode=0, data_format="NCHW", name=None, )
8470+
paddle.nn.functional.interpolate(Tensor([2, 2, 10, 57042535],"float32"), size=None, scale_factor=list[0.6,1.7999999999999998,], mode="nearest", align_corners=False, align_mode=1, data_format="NCHW", name=None, )
8471+
paddle.nn.functional.interpolate(Tensor([2, 2, 10, 57042535],"float32"), size=None, scale_factor=list[1.7999999999999998,0.6,], mode="bicubic", align_corners=False, align_mode=0, data_format="NCHW", name=None, )
8472+
paddle.nn.functional.interpolate(Tensor([2, 2, 10, 57042535],"float32"), size=None, scale_factor=list[1.7999999999999998,0.6,], mode="bicubic", align_corners=True, align_mode=1, data_format="NCHW", name=None, )
84478473
paddle.nn.functional.interpolate(Tensor([2, 2, 10, 57042535],"float32"), size=None, scale_factor=list[1.7999999999999998,0.6,], mode="bilinear", align_corners=False, align_mode=0, data_format="NCHW", name=None, )
84488474
paddle.nn.functional.interpolate(Tensor([2, 2, 10, 57042535],"float32"), size=None, scale_factor=list[1.7999999999999998,0.6,], mode="bilinear", align_corners=True, align_mode=1, data_format="NCHW", name=None, )
8475+
paddle.nn.functional.interpolate(Tensor([2, 2, 10, 57042535],"float32"), size=None, scale_factor=list[1.7999999999999998,0.6,], mode="nearest", align_corners=False, align_mode=0, data_format="NCHW", name=None, )
8476+
paddle.nn.functional.interpolate(Tensor([2, 2, 10, 57042535],"float32"), size=None, scale_factor=list[1.7999999999999998,0.6,], mode="nearest", align_corners=False, align_mode=1, data_format="NCHW", name=None, )
84498477
paddle.nn.functional.interpolate(Tensor([2, 2, 10, 57042535],"float32"), size=list[13,13,], scale_factor=None, mode="bilinear", align_corners=False, align_mode=0, data_format="NCHW", name=None, )
84508478
paddle.nn.functional.interpolate(Tensor([2, 2, 10, 57042535],"float32"), size=list[13,13,], scale_factor=None, mode="bilinear", align_corners=True, align_mode=1, data_format="NCHW", name=None, )
84518479
paddle.nn.functional.interpolate(Tensor([2, 2, 10, 57042535],"float32"), size=list[13,13,], scale_factor=None, mode="nearest", align_corners=False, align_mode=0, data_format="NCHW", name=None, )
@@ -8479,8 +8507,16 @@ paddle.nn.functional.interpolate(Tensor([2, 2, 35791395, 5, 6],"float16"), size=
84798507
paddle.nn.functional.interpolate(Tensor([2, 2, 4, 268435457],"float16"), size=list[9,10,], scale_factor=None, mode="nearest", align_corners=False, align_mode=0, data_format="NCHW", name=None, )
84808508
paddle.nn.functional.interpolate(Tensor([2, 2, 4, 44739243, 6],"float16"), size=list[9,10,11,], scale_factor=None, mode="trilinear", align_corners=False, align_mode=0, data_format="NCDHW", name=None, )
84818509
paddle.nn.functional.interpolate(Tensor([2, 2, 4, 5, 53687092],"float16"), size=list[9,10,11,], scale_factor=None, mode="trilinear", align_corners=False, align_mode=0, data_format="NCDHW", name=None, )
8510+
paddle.nn.functional.interpolate(Tensor([2, 2, 57042535, 10],"float32"), size=None, scale_factor=list[0.6,0.6,], mode="bicubic", align_corners=False, align_mode=0, data_format="NCHW", name=None, )
8511+
paddle.nn.functional.interpolate(Tensor([2, 2, 57042535, 10],"float32"), size=None, scale_factor=list[0.6,0.6,], mode="bicubic", align_corners=True, align_mode=1, data_format="NCHW", name=None, )
8512+
paddle.nn.functional.interpolate(Tensor([2, 2, 57042535, 10],"float32"), size=None, scale_factor=list[0.6,0.6,], mode="bilinear", align_corners=False, align_mode=0, data_format="NCHW", name=None, )
8513+
paddle.nn.functional.interpolate(Tensor([2, 2, 57042535, 10],"float32"), size=None, scale_factor=list[0.6,0.6,], mode="bilinear", align_corners=True, align_mode=1, data_format="NCHW", name=None, )
8514+
paddle.nn.functional.interpolate(Tensor([2, 2, 57042535, 10],"float32"), size=None, scale_factor=list[0.6,1.7999999999999998,], mode="bicubic", align_corners=False, align_mode=0, data_format="NCHW", name=None, )
8515+
paddle.nn.functional.interpolate(Tensor([2, 2, 57042535, 10],"float32"), size=None, scale_factor=list[0.6,1.7999999999999998,], mode="bicubic", align_corners=True, align_mode=1, data_format="NCHW", name=None, )
84828516
paddle.nn.functional.interpolate(Tensor([2, 2, 57042535, 10],"float32"), size=None, scale_factor=list[0.6,1.7999999999999998,], mode="bilinear", align_corners=False, align_mode=0, data_format="NCHW", name=None, )
84838517
paddle.nn.functional.interpolate(Tensor([2, 2, 57042535, 10],"float32"), size=None, scale_factor=list[0.6,1.7999999999999998,], mode="bilinear", align_corners=True, align_mode=1, data_format="NCHW", name=None, )
8518+
paddle.nn.functional.interpolate(Tensor([2, 2, 57042535, 10],"float32"), size=None, scale_factor=list[1.7999999999999998,0.6,], mode="bicubic", align_corners=False, align_mode=0, data_format="NCHW", name=None, )
8519+
paddle.nn.functional.interpolate(Tensor([2, 2, 57042535, 10],"float32"), size=None, scale_factor=list[1.7999999999999998,0.6,], mode="bicubic", align_corners=True, align_mode=1, data_format="NCHW", name=None, )
84848520
paddle.nn.functional.interpolate(Tensor([2, 2, 57042535, 10],"float32"), size=None, scale_factor=list[1.7999999999999998,0.6,], mode="bilinear", align_corners=False, align_mode=0, data_format="NCHW", name=None, )
84858521
paddle.nn.functional.interpolate(Tensor([2, 2, 57042535, 10],"float32"), size=None, scale_factor=list[1.7999999999999998,0.6,], mode="bilinear", align_corners=True, align_mode=1, data_format="NCHW", name=None, )
84868522
paddle.nn.functional.interpolate(Tensor([2, 2, 57042535, 10],"float32"), size=list[13,13,], scale_factor=None, mode="bilinear", align_corners=False, align_mode=0, data_format="NCHW", name=None, )
@@ -8533,6 +8569,10 @@ paddle.nn.functional.interpolate(Tensor([2, 4, 2852127, 10, 10],"float32"), size
85338569
paddle.nn.functional.interpolate(Tensor([2, 4, 4, 4, 33554433],"float16"), size=list[3,3,3,], mode="trilinear", align_corners=True, align_mode=1, data_format="NDHWC", )
85348570
paddle.nn.functional.interpolate(Tensor([2, 4, 44739243, 4, 3],"float16"), size=list[3,3,3,], mode="trilinear", align_corners=True, align_mode=1, data_format="NDHWC", )
85358571
paddle.nn.functional.interpolate(Tensor([2, 44739243, 4, 4, 3],"float16"), size=list[3,3,3,], mode="trilinear", align_corners=True, align_mode=1, data_format="NDHWC", )
8572+
paddle.nn.functional.interpolate(Tensor([2, 536870913, 4],"float16"), size=None, scale_factor=list[1.0000000000000002,], mode="linear", align_corners=False, align_mode=0, data_format="NWC", name=None, )
8573+
paddle.nn.functional.interpolate(Tensor([2, 536870913, 4],"float16"), size=None, scale_factor=list[1.0000000000000002,], mode="linear", align_corners=False, align_mode=1, data_format="NWC", name=None, )
8574+
paddle.nn.functional.interpolate(Tensor([2, 536870913, 4],"float16"), size=None, scale_factor=list[1.0000000000000002,], mode="linear", align_corners=True, align_mode=0, data_format="NWC", name=None, )
8575+
paddle.nn.functional.interpolate(Tensor([2, 536870913, 4],"float16"), size=None, scale_factor=list[1.0000000000000002,], mode="linear", align_corners=True, align_mode=1, data_format="NWC", name=None, )
85368576
paddle.nn.functional.interpolate(Tensor([2, 5368710, 10, 10, 4],"float16"), size=list[4,2,3,], scale_factor=None, mode="trilinear", align_corners=False, align_mode=0, data_format="NDHWC", name=None, )
85378577
paddle.nn.functional.interpolate(Tensor([2, 5368710, 10, 10, 4],"float16"), size=list[4,2,3,], scale_factor=None, mode="trilinear", align_corners=True, align_mode=1, data_format="NDHWC", name=None, )
85388578
paddle.nn.functional.interpolate(Tensor([2, 64, 262145, 68],"float32"), size=list[68,68,], mode="bilinear", align_corners=False, )

0 commit comments

Comments
 (0)