This project is the comparative analysis of different primality testing algorithms.
Modern cryptography algorithms like RSA need primality tests to generate large random primes.
Specifically, RSA uses the product of two prime numbers to generate the public and private keys; if these primes are predictable, it makes it easier for an attacker to break the encryption scheme.
Large random primes are constructed in practice by generating pseudorandom numbers and then doing a primality test such as the Fermat primality test or something more powerful such as the Miller–Rabin primality test.
These primality tests fail for certain numbers called pseudoprimes.
My research focuses on analyzing the class of Perrin-type primality tests- Lucas-Type Sequence:
If p is prime, then we have the congruence
Dougherty-Bliss and Zeilberger looked at these recently. They find that certain recurrent sequences produce primality tests for which the smallest pseudoprime is very large.
- Notifications
You must be signed in to change notification settings - Fork 0
OssieLin/Comparative-Analysis-of-Primality-Testing-Algorithms
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
About
Studying the quality of different primality tests and finding ways to reduce pseudoprimes
Topics
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published