|
| 1 | +package main.java.dp; |
| 2 | + |
| 3 | +import java.util.Scanner; |
| 4 | + |
| 5 | +public class Fibonacci { |
| 6 | + public static void main(String[] args) { |
| 7 | + final Scanner scanner = new Scanner(System.in); |
| 8 | + final int n = scanner.nextInt(); |
| 9 | + //Fib sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21 |
| 10 | + System.out.println(fibonacciDP(n)); |
| 11 | + System.out.println(fibonacciRecursive(n)); |
| 12 | + System.out.println(fibonacciMatrix(n)); |
| 13 | + } |
| 14 | + |
| 15 | + private static long fibonacciRecursive(final int n) { |
| 16 | + if (n < 2) { |
| 17 | + if (n == 0) { |
| 18 | + return 0; |
| 19 | + } else { |
| 20 | + return 1; |
| 21 | + } |
| 22 | + } |
| 23 | + return fibonacciRecursive(n - 1) + fibonacciRecursive(n - 2); |
| 24 | + } |
| 25 | + |
| 26 | + private static long fibonacciDP(final int n) { |
| 27 | + if (n < 2) { |
| 28 | + if (n == 0) { |
| 29 | + return 0; |
| 30 | + } else { |
| 31 | + return 1; |
| 32 | + } |
| 33 | + } |
| 34 | + long first = 0, second = 1; |
| 35 | + for (int i = 0; i < n; i++) { |
| 36 | + final long temp = first; |
| 37 | + first = second; |
| 38 | + second = second + temp; |
| 39 | + } |
| 40 | + return first; |
| 41 | + } |
| 42 | + |
| 43 | + private static long fibonacciMatrix(int n) { |
| 44 | + if (n < 2) { |
| 45 | + if (n == 0) { |
| 46 | + return 0; |
| 47 | + } else { |
| 48 | + return 1; |
| 49 | + } |
| 50 | + } |
| 51 | + n--; |
| 52 | + long product[][] = new long[][]{{1, 0}, {0, 1}}, M[][] = new long[][]{{1, 1}, {1, 0}}; |
| 53 | + while (n > 0) { |
| 54 | + if ((n & 1) == 1) { |
| 55 | + product = matrixMult(product, M); |
| 56 | + } |
| 57 | + M = matrixMult(M, M); |
| 58 | + n = n >> 1; |
| 59 | + } |
| 60 | + return product[1][0] + product[1][1]; |
| 61 | + } |
| 62 | + |
| 63 | + private static long[][] matrixMult(final long[][] first, final long[][] second) { |
| 64 | + final long f00 = first[0][0] * second[0][0] + first[0][1] * second[1][0], |
| 65 | + f01 = first[0][0] * second[0][1] + first[0][1] * second[1][1], |
| 66 | + f10 = first[1][0] * second[0][0] + first[1][1] * second[1][0], |
| 67 | + f11 = first[1][0] * second[0][1] + first[1][1] * second[1][1]; |
| 68 | + return new long[][]{{f00, f01}, {f10, f11}}; |
| 69 | + } |
| 70 | +} |
0 commit comments