|
19 | 19 | ## Contents
|
20 | 20 | * [Machine Learning](#machine-learning)
|
21 | 21 | * [Deep Learning](#deep-learning)
|
| 22 | +* [Web Scraping](#web-scraping) |
22 | 23 | * [Data Manipulation](#data-manipulation)
|
23 | 24 | * [Feature Engineering](#feature-engineering)
|
24 | 25 | * [Visualization](#visualization)
|
|
186 | 187 | * [Caffe2](https://github.com/pytorch/pytorch/tree/master/caffe2) - A lightweight, modular, and scalable deep learning framework (now a part of PyTorch).
|
187 | 188 | * [hipCaffe](https://github.com/ROCmSoftwarePlatform/hipCaffe) - The HIP port of Caffe. <img height="20" src="img/amd_big.png" alt="Possible to run on AMD GPU">
|
188 | 189 |
|
| 190 | +## Web Scraping |
| 191 | +* [BeautifulSoup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/): The easiest library to scrape static websites for beginners |
| 192 | +* [Scrapy](https://scrapy.org/): Fast and extensible scraping library. Can write rules and create customized scraper without touching the coure |
| 193 | +* [Selenium](https://selenium-python.readthedocs.io/installation.html#introduction): Use Selenium Python API to access all functionalities of Selenium WebDriver in an intuitive way like a real user. |
| 194 | +* [Pattern](https://github.com/clips/pattern): High level scraping for well-establish websites such as Google, Twitter, and Wikipedia. Also has NLP, machine learning algorithms, and visualization |
| 195 | + |
189 | 196 | ## Data Manipulation
|
190 | 197 |
|
191 | 198 | ### Data Containers
|
|
216 | 223 | * [meza](https://github.com/reubano/meza) - A Python toolkit for processing tabular data.
|
217 | 224 | * [Prodmodel](https://github.com/prodmodel/prodmodel) - Build system for data science pipelines.
|
218 | 225 | * [dopanda](https://github.com/dovpanda-dev/dovpanda) - Hints and tips for using pandas in an analysis environment. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
|
| 226 | +* [CircleCi](https://circleci.com/): Automates your software builds, tests, and deployments. |
219 | 227 |
|
220 | 228 | ## Feature Engineering
|
221 | 229 |
|
|
234 | 242 | * [scikit-rebate](https://github.com/EpistasisLab/scikit-rebate) - A scikit-learn-compatible Python implementation of ReBATE, a suite of Relief-based feature selection algorithms for Machine Learning. <img height="20" src="img/sklearn_big.png" alt="sklearn">
|
235 | 243 |
|
236 | 244 | ## Visualization
|
| 245 | +### General Purposes |
237 | 246 | * [Matplotlib](https://github.com/matplotlib/matplotlib) - Plotting with Python.
|
238 | 247 | * [seaborn](https://github.com/mwaskom/seaborn) - Statistical data visualization using matplotlib.
|
239 |
| -* [Bokeh](https://github.com/bokeh/bokeh) - Interactive Web Plotting for Python. |
240 |
| -* [HoloViews](https://github.com/ioam/holoviews) - Stop plotting your data - annotate your data and let it visualize itself. |
241 | 248 | * [prettyplotlib](https://github.com/olgabot/prettyplotlib) - Painlessly create beautiful matplotlib plots.
|
242 | 249 | * [python-ternary](https://github.com/marcharper/python-ternary) - Ternary plotting library for python with matplotlib.
|
243 | 250 | * [missingno](https://github.com/ResidentMario/missingno) - Missing data visualization module for Python.
|
244 | 251 | * [chartify](https://github.com/spotify/chartify/) - Python library that makes it easy for data scientists to create charts.
|
245 | 252 | * [physt](https://github.com/janpipek/physt) - Improved histograms.
|
| 253 | +### Interactive plots |
246 | 254 | * [animatplot](https://github.com/t-makaro/animatplot) - A python package for animating plots build on matplotlib.
|
247 | 255 | * [plotly](https://plot.ly/python/) - A Python library that makes interactive and publication-quality graphs.
|
| 256 | +* [Bokeh](https://github.com/bokeh/bokeh) - Interactive Web Plotting for Python. |
| 257 | +* [Altair](https://altair-viz.github.io/): Declarative statistical visualization library for Python. Can easily do many data transformation within the code to create graph |
| 258 | +### Map |
248 | 259 | * [folium](https://python-visualization.github.io/folium/quickstart.html#Getting-Started) - Makes it easy to visualize data on an interactive open street map
|
249 | 260 | * [geemap](https://github.com/giswqs/geemap) - Python package for interactive mapping with Google Earth Engine (GEE)
|
| 261 | +### Automatic Plotting |
| 262 | +* [HoloViews](https://github.com/ioam/holoviews) - Stop plotting your data - annotate your data and let it visualize itself. |
| 263 | +* [AutoViz](https://github.com/AutoViML/AutoViz): Visualize data automatically with 1 line of code |
| 264 | + |
250 | 265 |
|
251 | 266 |
|
252 | 267 | ## Deployment
|
|
0 commit comments