You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+44-1Lines changed: 44 additions & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -2874,6 +2874,49 @@ In this section, we only list the top three results of each competition. Please
2874
2874
2875
2875
**[60] \[arXiv-2019]** X. Chen, T. Wang, Y. Zhu, L. Jin, and C. Luo. Adaptive Embedding Gate for Attention-Based Scene Text Recognition.[J] arXiv preprint arXiv:1908.09475, 2019. [paper](https://arxiv.org/pdf/1908.09475.pdf)
2876
2876
2877
+
***
2878
+
**Newly added references**
2879
+
2880
+
**[61]** \[ICFHR-2018] Wang C, Yin F, Liu C L. Memory-Augmented Attention Model for Scene Text Recognition[C] //2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR). IEEE, 2018: 62-67. [paper](https://ieeexplore.ieee.org/abstract/document/8563227)
2881
+
2882
+
**[62]** \[ICCV-2019] Yang M K, Guan Y, Liao M, et al. Symmetry-constrained Rectification Network for Scene Text Recognition[J]. arXiv preprint arXiv:1908.01957, 2019. [paper](http://openaccess.thecvf.com/content_ICCV_2019/papers/Yang_Symmetry-Constrained_Rectification_Network_for_Scene_Text_Recognition_ICCV_2019_paper.pdf)
2883
+
2884
+
**[63]** \[ICCV-2019] Sun Y, Liu J, Liu W, et al. Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning[J]. arXiv preprint arXiv:1909.07808, 2019. [paper](http://openaccess.thecvf.com/content_ICCV_2019/papers/Sun_Chinese_Street_View_Text_Large-Scale_Chinese_Text_Reading_With_Partially_ICCV_2019_paper.pdf)
2885
+
2886
+
**[64]** \[ICME-2019] Wang S, Wang Y, Qin X, et al. Scene Text Recognition via Gated Cascade Attention[C]//2019 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2019: 1018-1023. [paper](https://ieeexplore.ieee.org/abstract/document/8784914)
2887
+
2888
+
**[65]** \[ICCV-2019] Baek J, Kim G, Lee J, et al. What is wrong with scene text recognition model comparisons? dataset and model analysis[J]. arXiv preprint arXiv:1904.01906, 2019. [paper](http://openaccess.thecvf.com/content_ICCV_2019/papers/Baek_What_Is_Wrong_With_Scene_Text_Recognition_Model_Comparisons_Dataset_ICCV_2019_paper.pdf) [code](https://github.com/clovaai/deep-text-recognition-benchmark)
2889
+
2890
+
**[66]** \[Nips-2017] Wang J, Hu X. Gated recurrent convolution neural network for ocr[C]//Advances in Neural Information Processing Systems. 2017: 335-344. [paper](http://papers.nips.cc/paper/6637-gated-recurrent-convolution-neural-network-for-ocr.pdf) [code](https://github.com/Jianfeng1991/GRCNN-for-OCR)
2891
+
2892
+
**[67]** \[NC-2019] Huang, Yunlong, et al. "EPAN: Effective parts attention network for scene text recognition." *Neurocomputing* (2019). [paper](https://www.sciencedirect.com/science/article/pii/S0925231219313839)
2893
+
2894
+
**[68]** \[NC-2019] Gao, Yunze, et al. "Reading scene text with fully convolutional sequence modeling." *Neurocomputing* 339 (2019): 161-170. [paper](https://www.sciencedirect.com/science/article/pii/S0925231219301870)
2895
+
2896
+
**[69]** \[ICDAR-2019] Qi, Xianbiao, et al. "A Novel Joint Character Categorization and Localization Approach for Character-Level Scene Text Recognition." *2019 International Conference on Document Analysis and Recognition Workshops (ICDARW)*. Vol. 5. IEEE, 2019. [paper](https://ieeexplore.ieee.org/abstract/document/8892915)
2897
+
2898
+
**[70]** \[ICDAR-2019] Wang, Qingqing, et al. "ReELFA: A Scene Text Recognizer with Encoded Location and Focused Attention." *2019 International Conference on Document Analysis and Recognition Workshops (ICDARW)*. Vol. 5. IEEE, 2019. [paper](https://ieeexplore.ieee.org/abstract/document/8892900)
2899
+
2900
+
**[71]** \[ICIP-2019] Zhu, Yiwei, et al. "Text Recognition in Images Based on Transformer with Hierarchical Attention." *2019 IEEE International Conference on Image Processing (ICIP)*. IEEE, 2019. [paper](https://ieeexplore.ieee.org/abstract/document/8803203)
2901
+
2902
+
**[72]** \[CVPR-2019] Zhan, Fangneng, Hongyuan Zhu, and Shijian Lu. "Spatial fusion gan for image synthesis." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2019. [paper](http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhan_Spatial_Fusion_GAN_for_Image_Synthesis_CVPR_2019_paper.pdf)
2903
+
2904
+
**[73]** \[ECCV-2018] Zhan, Fangneng, Shijian Lu, and Chuhui Xue. "Verisimilar image synthesis for accurate detection and recognition of texts in scenes." *Proceedings of the European Conference on Computer Vision (ECCV)*. 2018. [paper](http://openaccess.thecvf.com/content_ECCV_2018/papers/Fangneng_Zhan_Verisimilar_Image_Synthesis_ECCV_2018_paper.pdf) [code](https://github.com/fnzhan/Verisimilar-Image-Synthesis-for-Accurate-Detection-and-Recognition-of-Texts-in-Scenes)
2905
+
2906
+
**[74]** \[MultiMedia-2018] Fang, Shancheng, et al. "Attention and language ensemble for scene text recognition with convolutional sequence modeling." *2018 ACM Multimedia Conference on Multimedia Conference*. ACM, 2018. [paper](https://dl.acm.org/citation.cfm?id=3240571) [code](https://github.com/FangShancheng/conv-ensemble-str)
2907
+
2908
+
**[75]** \[Nips-2018] Liu, Hu, Sheng Jin, and Changshui Zhang. "Connectionist temporal classification with maximum entropy regularization." *Advances in Neural Information Processing Systems*. 2018. [paper](http://papers.nips.cc/paper/7363-connectionist-temporal-classification-with-maximum-entropy-regularization) [code](https://github.com/liuhu-bigeye/enctc.crnn )
2909
+
2910
+
**[76]** \[PR-2017] Su, Bolan, and Shijian Lu. "Accurate recognition of words in scenes without character segmentation using recurrent neural network." *Pattern Recognition* 63 (2017): 397-405. [paper](https://www.sciencedirect.com/science/article/pii/S0031320316303314)
2911
+
2912
+
**[77]** \[CVIU-2016] Mishra, Anand, Karteek Alahari, and C. V. Jawahar. "Enhancing energy minimization framework for scene text recognition with top-down cues." *Computer Vision and Image Understanding* 145 (2016): 30-42. [paper](https://www.sciencedirect.com/science/article/pii/S107731421600014X)
2913
+
2914
+
**[78]** \[ICPR-2016] Liu, Xinhao, et al. "Scene text recognition with CNN classifier and WFST-based word labeling." *2016 23rd International Conference on Pattern Recognition (ICPR)*. IEEE, 2016. [paper](https://ieeexplore.ieee.org/abstract/document/7900259)
2915
+
2916
+
**[79]** \[TPAMI-2019] Liao M, Lyu P, He M, et al. Mask textspotter: An end-to-end trainable neural network for spotting text with arbitrary shapes[J]. IEEE transactions on pattern analysis and machine intelligence, 2019. [paper](https://ieeexplore.ieee.org/abstract/document/8812908) [code](https://github.com/MhLiao/MaskTextSpotter)
2917
+
2918
+
**[80]** \[AAAI-2020] T. Wang, Y. Zhu, L. Jin, C. Luo and X. Chen. Decoupled Attention Network for Text Recognition[C]//AAAI. 2020.
2919
+
2877
2920
***
2878
2921
2879
2922
<a id="6help"></a>
@@ -2891,7 +2934,7 @@ If you find any problems in our resources, or any good papers/codes we have miss
0 commit comments