|
| 1 | +✅ Java Code: countGoodArrays |
| 2 | + |
| 3 | +class Solution { |
| 4 | + public int countGoodArrays(int n, int m, int k) { |
| 5 | + final long[][] factAndInvFact = getFactAndInvFact(n); |
| 6 | + final long[] fact = factAndInvFact[0]; |
| 7 | + final long[] invFact = factAndInvFact[1]; |
| 8 | + return (int) (m * modPow(m - 1, n - k - 1) % MOD * nCk(n - 1, k, fact, invFact) % MOD); |
| 9 | + } |
| 10 | + |
| 11 | + private static final int MOD = 1_000_000_007; |
| 12 | + |
| 13 | + private long modPow(long x, long n) { |
| 14 | + if (n == 0) |
| 15 | + return 1; |
| 16 | + if (n % 2 == 1) |
| 17 | + return x * modPow(x, n - 1) % MOD; |
| 18 | + return modPow(x * x % MOD, n / 2); |
| 19 | + } |
| 20 | + |
| 21 | + private long[][] getFactAndInvFact(int n) { |
| 22 | + long[] fact = new long[n + 1]; |
| 23 | + long[] invFact = new long[n + 1]; |
| 24 | + long[] inv = new long[n + 1]; |
| 25 | + fact[0] = invFact[0] = 1; |
| 26 | + inv[0] = inv[1] = 1; |
| 27 | + for (int i = 1; i <= n; ++i) { |
| 28 | + if (i >= 2) |
| 29 | + inv[i] = MOD - MOD / i * inv[MOD % i] % MOD; |
| 30 | + fact[i] = fact[i - 1] * i % MOD; |
| 31 | + invFact[i] = invFact[i - 1] * inv[i] % MOD; |
| 32 | + } |
| 33 | + return new long[][] {fact, invFact}; |
| 34 | + } |
| 35 | + |
| 36 | + private int nCk(int n, int k, long[] fact, long[] invFact) { |
| 37 | + return (int) (fact[n] * invFact[k] % MOD * invFact[n - k] % MOD); |
| 38 | + } |
| 39 | +} |
| 40 | + |
| 41 | + |
| 42 | + |
| 43 | +📘Explanation |
| 44 | + |
| 45 | +public int countGoodArrays(int n, int m, int k) |
| 46 | +🔹 n = array ka size |
| 47 | +🔹 m = allowed values 1 se m tak |
| 48 | +🔹 k = number of equal adjacent pairs required |
| 49 | + |
| 50 | +final long[][] factAndInvFact = getFactAndInvFact(n); |
| 51 | +🔹 Factorials aur unka modular inverse calculate kar liya for combination calculation. |
| 52 | + |
| 53 | +final long[] fact = factAndInvFact[0]; |
| 54 | +final long[] invFact = factAndInvFact[1]; |
| 55 | +🔹 Arrays ko alag variables me assign kar liya. |
| 56 | + |
| 57 | +return (int) (m * modPow(m - 1, n - k - 1) % MOD * nCk(n - 1, k, fact, invFact) % MOD); |
| 58 | +🔹 Final answer: |
| 59 | + |
| 60 | +Pehle element ke liye m choices |
| 61 | + |
| 62 | +Baaki n-k-1 elements ke liye (m-1) choices (different from previous) |
| 63 | + |
| 64 | +n-1 gaps me se k equal hone chahiye → nCk(n-1, k) |
| 65 | + |
| 66 | +Supporting Methods: |
| 67 | +modPow(x, n) → Fast Power (Binary Exponentiation) |
| 68 | + |
| 69 | +private long modPow(long x, long n) |
| 70 | +🔹 x^n % MOD calculate karta hai efficiently |
| 71 | +🔹 Recursive approach use kiya with modulo at each step |
| 72 | + |
| 73 | +getFactAndInvFact(n) |
| 74 | + |
| 75 | +private long[][] getFactAndInvFact(int n) |
| 76 | +🔹 Factorials aur unka inverse precompute karta hai: |
| 77 | + |
| 78 | +fact[i] = i! |
| 79 | + |
| 80 | +inv[i] = i⁻¹ mod MOD |
| 81 | + |
| 82 | +invFact[i] = (i!)⁻¹ mod MOD |
| 83 | + |
| 84 | +inv[i] = MOD - MOD / i * inv[MOD % i] % MOD; |
| 85 | +🔹 Fermat's Little Theorem use kiya inverse nikalne ke liye |
| 86 | + |
| 87 | +nCk(n, k, fact, invFact) |
| 88 | + |
| 89 | +private int nCk(int n, int k, long[] fact, long[] invFact) |
| 90 | +🔹 nCk (combination) = fact[n] * invFact[k] * invFact[n-k] % MOD |
| 91 | + |
| 92 | +🧠 Example Input: |
| 93 | +n = 4, m = 3, k = 1 |
| 94 | +Step by Step: |
| 95 | + |
| 96 | +Pehle element ke liye 3 choices |
| 97 | + |
| 98 | +4-1-1 = 2 elements = (m-1)^2 = 2^2 = 4 |
| 99 | + |
| 100 | +3 gaps, 1 equal = C(3,1) = 3 |
| 101 | +→ Total = 3 * 4 * 3 = 36 |
| 102 | + |
| 103 | +🚀 Time Complexity: |
| 104 | + |
| 105 | +O(n) for precomputing factorials |
| 106 | + |
| 107 | +O(log n) for power calculation |
| 108 | + |
| 109 | +O(1) for final answer after precomputation |
| 110 | + |
| 111 | +🚀 Space Complexity: |
| 112 | + |
| 113 | +O(n) for storing factorial and inverse arrays |
| 114 | + |
| 115 | +🔗 Need more help or Java tricks? |
| 116 | +https://www.linkedin.com/in/saurabh884095/ |
0 commit comments