Skip to content

Commit d6b9f5f

Browse files
committed
(翻译英文)线性代数
1 parent 8c413a8 commit d6b9f5f

File tree

1 file changed

+63
-74
lines changed

1 file changed

+63
-74
lines changed

docs/reference/routines/linalg.md

Lines changed: 63 additions & 74 deletions
Original file line numberDiff line numberDiff line change
@@ -1,91 +1,80 @@
1-
# Linear algebra (``numpy.linalg``)
1+
# 线性代数(``numpy.linalg``
22

3-
The NumPy linear algebra functions rely on BLAS and LAPACK to provide efficient
4-
low level implementations of standard linear algebra algorithms. Those
5-
libraries may be provided by NumPy itself using C versions of a subset of their
6-
reference implementations but, when possible, highly optimized libraries that
7-
take advantage of specialized processor functionality are preferred. Examples
8-
of such libraries are [OpenBLAS](https://www.openblas.net/), MKL (TM), and ATLAS. Because those libraries
9-
are multithreaded and processor dependent, environmental variables and external
10-
packages such as [threadpoolctl](https://github.com/joblib/threadpoolctl) may be needed to control the number of threads
11-
or specify the processor architecture.
3+
NumPy线性代数函数依赖于BLAS和LAPACK来提供标准线性代数算法的高效低级实现。
4+
这些库可以由NumPy本身使用其参考实现子集的C版本提供,
5+
但如果可能,最好是利用专用处理器功能的高度优化的库。
6+
这样的库的例子是[OpenBLAS](https://www.openblas.net/)、MKL(TM)和ATLAS。因为这些库是多线程和处理器相关的,
7+
所以可能需要环境变量和外部包(如[threadpoolctl](https://github.com/joblib/threadpoolctl))来控制线程数量或指定处理器体系结构。
128

13-
## Matrix and vector products
9+
## 矩阵和向量积
1410

15-
method | description
11+
方法 | 描述
1612
---|---
17-
[dot](https://numpy.org/devdocs/reference/generated/numpy.dot.html#numpy.dot)(a, b[, out]) | Dot product of two arrays.
18-
[linalg.multi_dot](https://numpy.org/devdocs/reference/generated/numpy.linalg.multi_dot.html#numpy.linalg.multi_dot)(arrays) | Compute the dot product of two or more arrays in a single function call, while automatically selecting the fastest evaluation order.
19-
[vdot](https://numpy.org/devdocs/reference/generated/numpy.vdot.html#numpy.vdot)(a, b) | Return the dot product of two vectors.
20-
[inner](https://numpy.org/devdocs/reference/generated/numpy.inner.html#numpy.inner)(a, b) | Inner product of two arrays.
21-
[outer](https://numpy.org/devdocs/reference/generated/numpy.outer.html#numpy.outer)(a, b[, out]) | Compute the outer product of two vectors.
22-
[matmul](https://numpy.org/devdocs/reference/generated/numpy.matmul.html#numpy.matmul)(x1, x2, /[, out, casting, order, …]) | Matrix product of two arrays.
23-
[tensordot](https://numpy.org/devdocs/reference/generated/numpy.tensordot.html#numpy.tensordot)(a, b[, axes]) | Compute tensor dot product along specified axes.
24-
[einsum](https://numpy.org/devdocs/reference/generated/numpy.einsum.html#numpy.einsum)(subscripts, *operands[, out, dtype, …]) | Evaluates the Einstein summation convention on the operands.
25-
[einsum_path](https://numpy.org/devdocs/reference/generated/numpy.einsum_path.html#numpy.einsum_path)(subscripts, *operands[, optimize]) | Evaluates the lowest cost contraction order for an einsum expression by considering the creation of intermediate arrays.
26-
[linalg.matrix_power](https://numpy.org/devdocs/reference/generated/numpy.linalg.matrix_power.html#numpy.linalg.matrix_power)(a, n) | Raise a square matrix to the (integer) power n.
27-
[kron](https://numpy.org/devdocs/reference/generated/numpy.kron.html#numpy.kron)(a, b) | Kronecker product of two arrays.
28-
29-
## Decompositions
30-
31-
method | description
13+
[dot](https://numpy.org/devdocs/reference/generated/numpy.dot.html#numpy.dot)(a, b[, out]) | 两个数组的点积。
14+
[linalg.multi_dot](https://numpy.org/devdocs/reference/generated/numpy.linalg.multi_dot.html#numpy.linalg.multi_dot)(arrays) | 在单个函数调用中计算两个或更多数组的点积,同时自动选择最快的求值顺序。
15+
[vdot](https://numpy.org/devdocs/reference/generated/numpy.vdot.html#numpy.vdot)(a, b) | 返回两个向量的点积。
16+
[inner](https://numpy.org/devdocs/reference/generated/numpy.inner.html#numpy.inner)(a, b) | 两个数组的内积。
17+
[outer](https://numpy.org/devdocs/reference/generated/numpy.outer.html#numpy.outer)(a, b[, out]) | 计算两个向量的外积。
18+
[matmul](https://numpy.org/devdocs/reference/generated/numpy.matmul.html#numpy.matmul)(x1, x2, /[, out, casting, order, …]) | 两个数组的矩阵乘积。
19+
[tensordot](https://numpy.org/devdocs/reference/generated/numpy.tensordot.html#numpy.tensordot)(a, b[, axes]) | 沿指定轴计算张量点积。
20+
[einsum](https://numpy.org/devdocs/reference/generated/numpy.einsum.html#numpy.einsum)(subscripts, *operands[, out, dtype, …]) | 计算操作数上的爱因斯坦求和约定。
21+
[einsum_path](https://numpy.org/devdocs/reference/generated/numpy.einsum_path.html#numpy.einsum_path)(subscripts, *operands[, optimize]) | 通过考虑中间数组的创建,计算einsum表达式的最低成本压缩顺序。
22+
[linalg.matrix_power](https://numpy.org/devdocs/reference/generated/numpy.linalg.matrix_power.html#numpy.linalg.matrix_power)(a, n) | 将方阵提升为(整数)n次方。
23+
[kron](https://numpy.org/devdocs/reference/generated/numpy.kron.html#numpy.kron)(a, b) | 两个数组的Kronecker乘积。
24+
25+
## 分解
26+
27+
方法 | 描述
3228
---|---
33-
[linalg.cholesky](https://numpy.org/devdocs/reference/generated/numpy.linalg.cholesky.html#numpy.linalg.cholesky)(a) | Cholesky decomposition.
34-
[linalg.qr](https://numpy.org/devdocs/reference/generated/numpy.linalg.qr.html#numpy.linalg.qr)(a[, mode]) | Compute the qr factorization of a matrix.
35-
[linalg.svd](https://numpy.org/devdocs/reference/generated/numpy.linalg.svd.html#numpy.linalg.svd)(a[, full_matrices, compute_uv, …]) | Singular Value Decomposition.
29+
[linalg.cholesky](https://numpy.org/devdocs/reference/generated/numpy.linalg.cholesky.html#numpy.linalg.cholesky)(a) | Cholesky分解
30+
[linalg.qr](https://numpy.org/devdocs/reference/generated/numpy.linalg.qr.html#numpy.linalg.qr)(a[, mode]) | 计算矩阵的QR分解。
31+
[linalg.svd](https://numpy.org/devdocs/reference/generated/numpy.linalg.svd.html#numpy.linalg.svd)(a[, full_matrices, compute_uv, …]) | 奇异值分解
3632

37-
## Matrix eigenvalues
33+
## 矩阵特征值
3834

39-
method | description
35+
方法 | 描述
4036
---|---
41-
[linalg.eig](https://numpy.org/devdocs/reference/generated/numpy.linalg.eig.html#numpy.linalg.eig)(a) | Compute the eigenvalues and right eigenvectors of a square array.
42-
[linalg.eigh](https://numpy.org/devdocs/reference/generated/numpy.linalg.eigh.html#numpy.linalg.eigh)(a[, UPLO]) | Return the eigenvalues and eigenvectors of a complex Hermitian (conjugate symmetric) or a real symmetric matrix.
43-
[linalg.eigvals](https://numpy.org/devdocs/reference/generated/numpy.linalg.eigvals.html#numpy.linalg.eigvals)(a) | Compute the eigenvalues of a general matrix.
44-
[linalg.eigvalsh](https://numpy.org/devdocs/reference/generated/numpy.linalg.eigvalsh.html#numpy.linalg.eigvalsh)(a[, UPLO]) | Compute the eigenvalues of a complex Hermitian or real symmetric matrix.
37+
[linalg.eig](https://numpy.org/devdocs/reference/generated/numpy.linalg.eig.html#numpy.linalg.eig)(a) | 计算方阵的特征值和右特征向量。
38+
[linalg.eigh](https://numpy.org/devdocs/reference/generated/numpy.linalg.eigh.html#numpy.linalg.eigh)(a[, UPLO]) | 返回复数Hermitian(共轭对称)或实对称矩阵的特征值和特征向量。
39+
[linalg.eigvals](https://numpy.org/devdocs/reference/generated/numpy.linalg.eigvals.html#numpy.linalg.eigvals)(a) | 计算通用矩阵的特征值。
40+
[linalg.eigvalsh](https://numpy.org/devdocs/reference/generated/numpy.linalg.eigvalsh.html#numpy.linalg.eigvalsh)(a[, UPLO]) | 计算复杂的Hermitian或实对称矩阵的特征值。
4541

46-
## Norms and other numbers
42+
## 范数和其他数字
4743

48-
method | description
44+
方法 | 描述
4945
---|---
50-
[linalg.norm](https://numpy.org/devdocs/reference/generated/numpy.linalg.norm.html#numpy.linalg.norm)(x[, ord, axis, keepdims]) | Matrix or vector norm.
51-
[linalg.cond](https://numpy.org/devdocs/reference/generated/numpy.linalg.cond.html#numpy.linalg.cond)(x[, p]) | Compute the condition number of a matrix.
52-
[linalg.det](https://numpy.org/devdocs/reference/generated/numpy.linalg.det.html#numpy.linalg.det)(a) | Compute the determinant of an array.
53-
[linalg.matrix_rank](https://numpy.org/devdocs/reference/generated/numpy.linalg.matrix_rank.html#numpy.linalg.matrix_rank)(M[, tol, hermitian]) | Return matrix rank of array using SVD method
54-
[linalg.slogdet](https://numpy.org/devdocs/reference/generated/numpy.linalg.slogdet.html#numpy.linalg.slogdet)(a) | Compute the sign and (natural) logarithm of the determinant of an array.
55-
[trace](https://numpy.org/devdocs/reference/generated/numpy.trace.html#numpy.trace)(a[, offset, axis1, axis2, dtype, out]) | Return the sum along diagonals of the array.
46+
[linalg.norm](https://numpy.org/devdocs/reference/generated/numpy.linalg.norm.html#numpy.linalg.norm)(x[, ord, axis, keepdims]) | 矩阵或向量范数。
47+
[linalg.cond](https://numpy.org/devdocs/reference/generated/numpy.linalg.cond.html#numpy.linalg.cond)(x[, p]) | 计算矩阵的条件数。
48+
[linalg.det](https://numpy.org/devdocs/reference/generated/numpy.linalg.det.html#numpy.linalg.det)(a) | 计算数组的行列式。
49+
[linalg.matrix_rank](https://numpy.org/devdocs/reference/generated/numpy.linalg.matrix_rank.html#numpy.linalg.matrix_rank)(M[, tol, hermitian]) | 使用SVD方法返回数组的矩阵的rank
50+
[linalg.slogdet](https://numpy.org/devdocs/reference/generated/numpy.linalg.slogdet.html#numpy.linalg.slogdet)(a) | 计算数组行列式的符号和(自然)对数。
51+
[trace](https://numpy.org/devdocs/reference/generated/numpy.trace.html#numpy.trace)(a[, offset, axis1, axis2, dtype, out]) | 返回数组对角线的和。
5652

57-
## Solving equations and inverting matrices
53+
## 解方程和逆矩阵
5854

59-
method | description
55+
方法 | 描述
6056
---|---
61-
[linalg.solve](https://numpy.org/devdocs/reference/generated/numpy.linalg.solve.html#numpy.linalg.solve)(a, b) | Solve a linear matrix equation, or system of linear scalar equations.
62-
[linalg.tensorsolve](https://numpy.org/devdocs/reference/generated/numpy.linalg.tensorsolve.html#numpy.linalg.tensorsolve)(a, b[, axes]) | Solve the tensor equation a x = b for x.
63-
[linalg.lstsq](https://numpy.org/devdocs/reference/generated/numpy.linalg.lstsq.html#numpy.linalg.lstsq)(a, b[, rcond]) | Return the least-squares solution to a linear matrix equation.
64-
[linalg.inv](https://numpy.org/devdocs/reference/generated/numpy.linalg.inv.html#numpy.linalg.inv)(a) | Compute the (multiplicative) inverse of a matrix.
65-
[linalg.pinv](https://numpy.org/devdocs/reference/generated/numpy.linalg.pinv.html#numpy.linalg.pinv)(a[, rcond, hermitian]) | Compute the (Moore-Penrose) pseudo-inverse of a matrix.
66-
[linalg.tensorinv](https://numpy.org/devdocs/reference/generated/numpy.linalg.tensorinv.html#numpy.linalg.tensorinv)(a[, ind]) | Compute the ‘inverse’ of an N-dimensional array.
57+
[linalg.solve](https://numpy.org/devdocs/reference/generated/numpy.linalg.solve.html#numpy.linalg.solve)(a, b) | 求解线性矩阵方程或线性标量方程组。
58+
[linalg.tensorsolve](https://numpy.org/devdocs/reference/generated/numpy.linalg.tensorsolve.html#numpy.linalg.tensorsolve)(a, b[, axes]) | 对x求解张量方程a x = b
59+
[linalg.lstsq](https://numpy.org/devdocs/reference/generated/numpy.linalg.lstsq.html#numpy.linalg.lstsq)(a, b[, rcond]) | 返回线性矩阵方程的最小二乘解。
60+
[linalg.inv](https://numpy.org/devdocs/reference/generated/numpy.linalg.inv.html#numpy.linalg.inv)(a) | 计算矩阵的(乘法)逆。
61+
[linalg.pinv](https://numpy.org/devdocs/reference/generated/numpy.linalg.pinv.html#numpy.linalg.pinv)(a[, rcond, hermitian]) | 计算矩阵的(Moore-Penrose)伪逆。
62+
[linalg.tensorinv](https://numpy.org/devdocs/reference/generated/numpy.linalg.tensorinv.html#numpy.linalg.tensorinv)(a[, ind]) | 计算N维数组的“逆”。
6763

68-
## Exceptions
64+
## 例外
6965

70-
method | description
66+
方法 | 描述
7167
---|---
72-
[linalg.LinAlgError](https://numpy.org/devdocs/reference/generated/numpy.linalg.LinAlgError.html#numpy.linalg.LinAlgError) | Generic Python-exception-derived object raised by linalg functions.
73-
74-
## Linear algebra on several matrices at once
75-
76-
*New in version 1.8.0.*
77-
78-
Several of the linear algebra routines listed above are able to
79-
compute results for several matrices at once, if they are stacked into
80-
the same array.
81-
82-
This is indicated in the documentation via input parameter
83-
specifications such as ``a : (..., M, M) array_like``. This means that
84-
if for instance given an input array ``a.shape == (N, M, M)``, it is
85-
interpreted as a “stack” of N matrices, each of size M-by-M. Similar
86-
specification applies to return values, for instance the determinant
87-
has ``det : (...)`` and will in this case return an array of shape
88-
``det(a).shape == (N,)``. This generalizes to linear algebra
89-
operations on higher-dimensional arrays: the last 1 or 2 dimensions of
90-
a multidimensional array are interpreted as vectors or matrices, as
91-
appropriate for each operation.
68+
[linalg.LinAlgError](https://numpy.org/devdocs/reference/generated/numpy.linalg.LinAlgError.html#numpy.linalg.LinAlgError) | 泛型Python-linalg函数引发的异常派生对象。
69+
70+
## 一次在多个矩阵上的线性代数
71+
72+
*1.8.0版中的新功能*
73+
74+
上面列出的几个线性代数例程能够一次计算几个矩阵的结果,如果它们堆叠在同一数组中的话。
75+
76+
这在文档中通过输入参数规范(如 ``a : (..., M, M) array_like`` )表示。
77+
这意味着,例如,如果给定输入数组 ``a.shape == (N, M, M)`` ,则将其解释为N个矩阵的“堆栈”,
78+
每个矩阵的大小为M×M。类似的规范也适用于返回值,
79+
例如行列式 ``det : (...)`` 。并且在这种情况下将返回形状 ``det(a).shape == (N,)`` 的数组。
80+
这推广到对高维数组的线性代数操作:多维数组的最后1或2维被解释为向量或矩阵,视每个操作而定。

0 commit comments

Comments
 (0)