Skip to content

Commit 05dee21

Browse files
authored
Update README.md
1 parent e0465d0 commit 05dee21

File tree

1 file changed

+49
-51
lines changed

1 file changed

+49
-51
lines changed

README.md

Lines changed: 49 additions & 51 deletions
Original file line numberDiff line numberDiff line change
@@ -1,76 +1,74 @@
1-
# Particle Dataset
1+
# Particle Dataset (particle_dataset)
22

3-
Welcome to the GitHub page of DeepTrackAI's Particle dataset. The Particle dataset is a collection of movies of optically-trapped particles used for training and evaluating deep learning models.
3+
## Overview
44

5-
## Description
5+
This DeepTrackAI repository contains two short videos of an optically trapped microscopic particle undergoing Brownian motion. The dataset was published in
6+
[Helgadottir et al., Optica, 2019](https://doi.org/10.1364/OPTICA.6.000506).
7+
One video is acquired with **low noise** (`low_noise.avi`), and the other with **high noise** (`high_noise.avi`). In both cases, the particle jiggles around the center of the frame due to thermal motion.
68

7-
The Particle dataset contains 2 movies in avi format. Each frame is an RGB picture of a trapped spherical particle.
9+
---
810

9-
- **Dataset Size**: 2 movies
10-
- **Number of Frames**: 100 frames per movie
11-
- **Frame Size**: 120x120 pixels
12-
- **Color**: RGB
11+
## Summary
1312

14-
## Usage
13+
- **Number of videos**: 2 (`low_noise.avi`, `high_noise.avi`)
14+
- **Frames per video**: 100
15+
- **Frame size**: 120×120 pixels
16+
- **Color**: RGB
17+
- **Format**: AVI
1518

16-
To use the Particle dataset in your project:
19+
---
1720

18-
1. Clone this repository to your local machine.
19-
2. Import the dataset into your machine learning framework of choice.
20-
3. Train or evaluate your models using the dataset.
21+
## Original Source
2122

22-
### Download via Command Line
23+
- **Title:** Digital video microscopy enhanced by deep learning
24+
- **Authors:** Saga Helgadottir, Aykut Argun, Giovanni Volpe
25+
- **Journal:** Optica, 6(4): 506–513 (2019)
26+
- **DOI:** [10.1364/OPTICA.6.000506](https://doi.org/10.1364/OPTICA.6.000506)
2327

24-
To clone the repository and access the Particle dataset:
28+
If you use this dataset in your research, please follow the licensing requirements and properly attribute the original authors.
2529

26-
```bash
27-
git clone https://github.com/DeepTrackAI/particle_dataset
28-
cd particle_dataset
29-
```
30+
---
3031

31-
### Download Programmatically in Python
32+
## Dataset Structure
3233

33-
If you want to load the dataset directly into a Python script or Jupyter notebook:
34-
35-
```python
36-
import requests
37-
from io import BytesIO
38-
from zipfile import ZipFile
34+
```bash
35+
/particle_dataset
36+
├── low_noise.avi # Low-noise video of trapped particle (100 frames)
37+
└── high_noise.avi # High-noise video of trapped particle (100 frames)
38+
```
3939

40-
# URL to the repository (modify this if the dataset is hosted in a specific location or file)
41-
DATASET_URL = 'https://github.com/DeepTrackAI/particle_dataset/raw/main/mnist.zip'
40+
---
4241

43-
response = requests.get(DATASET_URL)
44-
with ZipFile(BytesIO(response.content)) as z:
45-
z.extractall()
42+
## How to Access the Data
4643

47-
# Now you can load the dataset using your preferred library, e.g., deeplay, PyTorch, TensorFlow.
44+
### Clone the Repository
45+
```bash
46+
git clone https://github.com/DeepTrackAI/particle_dataset
47+
cd particle_dataset
4848
```
4949

50-
## Acknowledgements
50+
---
5151

52-
The Particle dataset was originally created by Saga Helgadottir, Aykut Argun & Giovanni Volpe.
52+
## Attribution
5353

54-
If you use this dataset, please cite:
54+
### Cite the original paper:
55+
Helgadottir S, Argun A, Volpe G. *Digital video microscopy enhanced by deep learning.* Optica, 6(4): 506–513 (2019). [https://doi.org/10.1364/OPTICA.6.000506](https://doi.org/10.1364/OPTICA.6.000506)
5556

56-
<https://doi.org/10.1364/OPTICA.6.000506>:
57-
```
58-
Saga Helgadottir, Aykut Argun, and Giovanni Volpe.
59-
"Digital video microscopy enhanced by deep learning."
60-
Optica 6.4 (2019): 506-513.
57+
```bibtex
58+
@article{helgadottir2019digital,
59+
title={Digital video microscopy enhanced by deep learning},
60+
author={Helgadottir, Saga and Argun, Aykut and Volpe, Giovanni},
61+
journal={Optica},
62+
volume={6},
63+
number={4},
64+
pages={506--513},
65+
year={2019},
66+
publisher={Optica Publishing Group}
67+
}
6168
```
6269

63-
```
64-
Benjamin Midtvedt, Saga Helgadottir, Aykut Argun, Jesús Pineda, Daniel Midtvedt, Giovanni Volpe.
65-
"Quantitative Digital Microscopy with Deep Learning."
66-
Applied Physics Reviews 8 (2021), 011310.
67-
https://doi.org/10.1063/5.0034891
68-
```
70+
---
6971

7072
## License
7173

72-
The Particle dataset is made available under the terms of the [Creative Commons Attribution-Share Alike 3.0 license](https://creativecommons.org/licenses/by-sa/3.0/).
73-
74-
## Contributing
75-
76-
If you find any issues with the dataset or have suggestions for improvements, please open an issue or submit a pull request.
74+
This dataset is shared under the **Creative Commons Attribution-Share Alike 3.0** License, following the original licensing terms.

0 commit comments

Comments
 (0)