|
1 | | -# Particle Dataset |
| 1 | +# Particle Dataset (particle_dataset) |
2 | 2 |
|
3 | | -Welcome to the GitHub page of DeepTrackAI's Particle dataset. The Particle dataset is a collection of movies of optically-trapped particles used for training and evaluating deep learning models. |
| 3 | +## Overview |
4 | 4 |
|
5 | | -## Description |
| 5 | +This DeepTrackAI repository contains two short videos of an optically trapped microscopic particle undergoing Brownian motion. The dataset was published in |
| 6 | +[Helgadottir et al., Optica, 2019](https://doi.org/10.1364/OPTICA.6.000506). |
| 7 | +One video is acquired with **low noise** (`low_noise.avi`), and the other with **high noise** (`high_noise.avi`). In both cases, the particle jiggles around the center of the frame due to thermal motion. |
6 | 8 |
|
7 | | -The Particle dataset contains 2 movies in avi format. Each frame is an RGB picture of a trapped spherical particle. |
| 9 | +--- |
8 | 10 |
|
9 | | -- **Dataset Size**: 2 movies |
10 | | -- **Number of Frames**: 100 frames per movie |
11 | | -- **Frame Size**: 120x120 pixels |
12 | | -- **Color**: RGB |
| 11 | +## Summary |
13 | 12 |
|
14 | | -## Usage |
| 13 | +- **Number of videos**: 2 (`low_noise.avi`, `high_noise.avi`) |
| 14 | +- **Frames per video**: 100 |
| 15 | +- **Frame size**: 120×120 pixels |
| 16 | +- **Color**: RGB |
| 17 | +- **Format**: AVI |
15 | 18 |
|
16 | | -To use the Particle dataset in your project: |
| 19 | +--- |
17 | 20 |
|
18 | | -1. Clone this repository to your local machine. |
19 | | -2. Import the dataset into your machine learning framework of choice. |
20 | | -3. Train or evaluate your models using the dataset. |
| 21 | +## Original Source |
21 | 22 |
|
22 | | -### Download via Command Line |
| 23 | +- **Title:** Digital video microscopy enhanced by deep learning |
| 24 | +- **Authors:** Saga Helgadottir, Aykut Argun, Giovanni Volpe |
| 25 | +- **Journal:** Optica, 6(4): 506–513 (2019) |
| 26 | +- **DOI:** [10.1364/OPTICA.6.000506](https://doi.org/10.1364/OPTICA.6.000506) |
23 | 27 |
|
24 | | -To clone the repository and access the Particle dataset: |
| 28 | +If you use this dataset in your research, please follow the licensing requirements and properly attribute the original authors. |
25 | 29 |
|
26 | | -```bash |
27 | | -git clone https://github.com/DeepTrackAI/particle_dataset |
28 | | -cd particle_dataset |
29 | | -``` |
| 30 | +--- |
30 | 31 |
|
31 | | -### Download Programmatically in Python |
| 32 | +## Dataset Structure |
32 | 33 |
|
33 | | -If you want to load the dataset directly into a Python script or Jupyter notebook: |
34 | | - |
35 | | -```python |
36 | | -import requests |
37 | | -from io import BytesIO |
38 | | -from zipfile import ZipFile |
| 34 | +```bash |
| 35 | +/particle_dataset |
| 36 | +├── low_noise.avi # Low-noise video of trapped particle (100 frames) |
| 37 | +└── high_noise.avi # High-noise video of trapped particle (100 frames) |
| 38 | +``` |
39 | 39 |
|
40 | | -# URL to the repository (modify this if the dataset is hosted in a specific location or file) |
41 | | -DATASET_URL = 'https://github.com/DeepTrackAI/particle_dataset/raw/main/mnist.zip' |
| 40 | +--- |
42 | 41 |
|
43 | | -response = requests.get(DATASET_URL) |
44 | | -with ZipFile(BytesIO(response.content)) as z: |
45 | | - z.extractall() |
| 42 | +## How to Access the Data |
46 | 43 |
|
47 | | -# Now you can load the dataset using your preferred library, e.g., deeplay, PyTorch, TensorFlow. |
| 44 | +### Clone the Repository |
| 45 | +```bash |
| 46 | +git clone https://github.com/DeepTrackAI/particle_dataset |
| 47 | +cd particle_dataset |
48 | 48 | ``` |
49 | 49 |
|
50 | | -## Acknowledgements |
| 50 | +--- |
51 | 51 |
|
52 | | -The Particle dataset was originally created by Saga Helgadottir, Aykut Argun & Giovanni Volpe. |
| 52 | +## Attribution |
53 | 53 |
|
54 | | -If you use this dataset, please cite: |
| 54 | +### Cite the original paper: |
| 55 | +Helgadottir S, Argun A, Volpe G. *Digital video microscopy enhanced by deep learning.* Optica, 6(4): 506–513 (2019). [https://doi.org/10.1364/OPTICA.6.000506](https://doi.org/10.1364/OPTICA.6.000506) |
55 | 56 |
|
56 | | -<https://doi.org/10.1364/OPTICA.6.000506>: |
57 | | -``` |
58 | | -Saga Helgadottir, Aykut Argun, and Giovanni Volpe. |
59 | | -"Digital video microscopy enhanced by deep learning." |
60 | | -Optica 6.4 (2019): 506-513. |
| 57 | +```bibtex |
| 58 | +@article{helgadottir2019digital, |
| 59 | + title={Digital video microscopy enhanced by deep learning}, |
| 60 | + author={Helgadottir, Saga and Argun, Aykut and Volpe, Giovanni}, |
| 61 | + journal={Optica}, |
| 62 | + volume={6}, |
| 63 | + number={4}, |
| 64 | + pages={506--513}, |
| 65 | + year={2019}, |
| 66 | + publisher={Optica Publishing Group} |
| 67 | +} |
61 | 68 | ``` |
62 | 69 |
|
63 | | -``` |
64 | | -Benjamin Midtvedt, Saga Helgadottir, Aykut Argun, Jesús Pineda, Daniel Midtvedt, Giovanni Volpe. |
65 | | -"Quantitative Digital Microscopy with Deep Learning." |
66 | | -Applied Physics Reviews 8 (2021), 011310. |
67 | | -https://doi.org/10.1063/5.0034891 |
68 | | -``` |
| 70 | +--- |
69 | 71 |
|
70 | 72 | ## License |
71 | 73 |
|
72 | | -The Particle dataset is made available under the terms of the [Creative Commons Attribution-Share Alike 3.0 license](https://creativecommons.org/licenses/by-sa/3.0/). |
73 | | - |
74 | | -## Contributing |
75 | | - |
76 | | -If you find any issues with the dataset or have suggestions for improvements, please open an issue or submit a pull request. |
| 74 | +This dataset is shared under the **Creative Commons Attribution-Share Alike 3.0** License, following the original licensing terms. |
0 commit comments