@@ -24,6 +24,7 @@ inter.df <- data$inter.df
2424char.stats <- data $ char.stats
2525scene.stats <- data $ scene.stats
2626scene.chars <- data $ scene.chars
27+ page.stats <- data $ page.stats
2728volume.stats <- data $ volume.stats
2829scene.stats <- data $ scene.stats
2930
@@ -47,6 +48,18 @@ for(filtered in c(FALSE,TRUE))
4748# extract dynamic networks using the novel publication order (slightly different from the comic's)
4849tlog(2 ," Extracting novel-ordered dynamic networks" )
4950
51+ # read map file
52+ map.file <- file.path(DATA_FOLDER ," mapping.csv" )
53+ map <- read.csv(map.file , header = TRUE , check.names = FALSE , stringsAsFactors = FALSE )
54+ # compute page ranks
55+ parts <- sapply(1 : nrow(page.stats ), function (p ) map [map [,COL_VOLUME ]== page.stats [p ,COL_VOLUME ] & map [,COL_PAGE_START ]< = page.stats [p ,COL_PAGE ] & map [,COL_PAGE_END ]> = page.stats [p ,COL_PAGE ], COL_RANK ])
56+ page.stats [,COL_RANK ] <- rank(parts * (nrow(page.stats )+ 1 ) + page.stats [,COL_PAGE ])
57+ # compute other ranks
58+ panel.stats [,COL_RANK ] <- rank(page.stats [panel.stats [,COL_PAGE_ID ],COL_RANK ]* (nrow(panel.stats )+ 1 ) + panel.stats [,COL_PANEL ])
59+ # TODO
60+ scene.stats [,COL_RANK ] <- rank(volume.stats [scene.stats [,COL_VOLUME_ID ],COL_RANK ]* (nrow(scene.stats )+ 1 ) + scene.stats [,COL_SCENE_ID ], ties.method = " first" )
61+ inter.df [,COL_RANK ] <- rank(volume.stats [inter.df [,COL_VOLUME_ID ],COL_RANK ]* (nrow(inter.df )+ 1 ) + 1 : nrow(inter.df ), ties.method = " first" )
62+
5063
5164
5265
0 commit comments