|
| 1 | +#include <iostream> |
| 2 | +#include <vector> |
| 3 | +#include <queue> |
| 4 | +#include <cstring> |
| 5 | +using namespace std; |
| 6 | + |
| 7 | +#define MAX_N 500 |
| 8 | +#define INF 1e9 |
| 9 | + |
| 10 | +int n, m; |
| 11 | +vector<pair<int, int>> edges[MAX_N]; //각 노드 사이의 거리를 담는 배열 |
| 12 | +vector<pair<int, int>> trace[MAX_N]; //BFS의 역추적을 위한 배열 |
| 13 | +bool visited[MAX_N][MAX_N]; |
| 14 | + |
| 15 | +void init () { |
| 16 | + memset(visited, false, sizeof(visited)); |
| 17 | + memset(trace, 0, sizeof(trace)); |
| 18 | + for (int i = 0; i < MAX_N; i++) { |
| 19 | + edges[i].clear(); |
| 20 | + } |
| 21 | +} |
| 22 | + |
| 23 | +vector<int> dijkstra(int start, int nodes) { |
| 24 | + //dijkstra 알고리즘을 위한 거리 배열 - 시작점은 0, 그 외 무한으로 거리 초기화 |
| 25 | + vector<int> distance(nodes, INF); |
| 26 | + distance[start] = 0; |
| 27 | + |
| 28 | + priority_queue<pair<int, int>> pq; //-cost, node 번호 |
| 29 | + pq.push({0, start}); |
| 30 | + |
| 31 | + while (!pq.empty()) { |
| 32 | + int cost = -pq.top().first; |
| 33 | + int currentNode = pq.top().second; |
| 34 | + pq.pop(); |
| 35 | + |
| 36 | + if (distance[currentNode] < cost) continue; |
| 37 | + |
| 38 | + for (int i = 0; i < edges[currentNode].size(); i++) { |
| 39 | + int nextNode = edges[currentNode][i].first; |
| 40 | + int nextCost = cost + edges[currentNode][i].second; |
| 41 | + |
| 42 | + //삭제된 edge 무시 |
| 43 | + if (edges[currentNode][i].second == -1) continue; |
| 44 | + |
| 45 | + if (distance[nextNode] > nextCost) { |
| 46 | + distance[nextNode] = nextCost; |
| 47 | + pq.push(make_pair(-nextCost, nextNode)); |
| 48 | + |
| 49 | + //trace 갱신 |
| 50 | + trace[nextNode].clear(); |
| 51 | + trace[nextNode].push_back(make_pair(currentNode, nextCost)); |
| 52 | + } |
| 53 | + |
| 54 | + //최단 거리 찾을 때마다 trace update |
| 55 | + else if (distance[nextNode] == nextCost) |
| 56 | + trace[nextNode].push_back(make_pair(currentNode, nextCost)); |
| 57 | + } |
| 58 | + } |
| 59 | + return distance; |
| 60 | +} |
| 61 | + |
| 62 | +void BFS(int destination) { |
| 63 | + //queue를 이용하여 trace에 해당하는 정점들을 모두 지울 준비를 한다 |
| 64 | + queue<int> q; |
| 65 | + bool visitedNode[MAX_N]; |
| 66 | + for (int i = 0; i < n; i++) visitedNode[i] = false; |
| 67 | + q.push(destination); |
| 68 | + visitedNode[destination] = true; |
| 69 | + |
| 70 | + while (!q.empty()) { |
| 71 | + int currentNode = q.front(); |
| 72 | + q.pop(); |
| 73 | + |
| 74 | + for (int i = 0; i < trace[currentNode].size(); i++) { |
| 75 | + int nextNode = trace[currentNode][i].first; |
| 76 | + if (visited[currentNode][nextNode]) continue; |
| 77 | + |
| 78 | + //역순으로 접근하므로 nextNode 기준으로 접근 |
| 79 | + for (int i = 0; i < edges[nextNode].size(); i++) { |
| 80 | + if (edges[nextNode][i].first == currentNode) |
| 81 | + edges[nextNode][i].second = -1; |
| 82 | + } |
| 83 | + if (!visitedNode[nextNode]) { |
| 84 | + q.push(nextNode); |
| 85 | + visitedNode[nextNode] = true; |
| 86 | + } |
| 87 | + } |
| 88 | + } |
| 89 | +} |
| 90 | + |
| 91 | +int main() { |
| 92 | + ios::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); |
| 93 | + |
| 94 | + while (1) { |
| 95 | + init(); |
| 96 | + |
| 97 | + cin >> n >> m; |
| 98 | + if (n == 0 && m == 0) break; |
| 99 | + |
| 100 | + int start, goal; |
| 101 | + cin >> start >> goal; |
| 102 | + |
| 103 | + for (int i = 0; i < m; i++) { |
| 104 | + int from, to, cost; |
| 105 | + cin >> from >> to >> cost; |
| 106 | + edges[from].push_back({to, cost}); |
| 107 | + } |
| 108 | + |
| 109 | + dijkstra(start, n); |
| 110 | + BFS(goal); |
| 111 | + vector<int> result = dijkstra(start, n); |
| 112 | + |
| 113 | + if (result[goal] == INF) cout << -1 << '\n'; |
| 114 | + else cout << result[goal] << '\n'; |
| 115 | + } |
| 116 | + return 0; |
| 117 | +} |
0 commit comments