MLX-VLM is a package for inference and fine-tuning of Vision Language Models (VLMs) and Omni Models (VLMs with audio and video support) on your Mac using MLX.
The easiest way to get started is to install the mlx-vlm package using pip:
pip install -U mlx-vlmGenerate output from a model using the CLI:
# Text generation mlx_vlm.generate --model mlx-community/Qwen2-VL-2B-Instruct-4bit --max-tokens 100 --prompt "Hello, how are you?" # Image generation mlx_vlm.generate --model mlx-community/Qwen2-VL-2B-Instruct-4bit --max-tokens 100 --temperature 0.0 --image http://images.cocodataset.org/val2017/000000039769.jpg # Audio generation (New) mlx_vlm.generate --model mlx-community/gemma-3n-E2B-it-4bit --max-tokens 100 --prompt "Describe what you hear" --audio /path/to/audio.wav # Multi-modal generation (Image + Audio) mlx_vlm.generate --model mlx-community/gemma-3n-E2B-it-4bit --max-tokens 100 --prompt "Describe what you see and hear" --image /path/to/image.jpg --audio /path/to/audio.wavLaunch a chat interface using Gradio:
mlx_vlm.chat_ui --model mlx-community/Qwen2-VL-2B-Instruct-4bitHere's an example of how to use MLX-VLM in a Python script:
import mlx.core as mx from mlx_vlm import load, generate from mlx_vlm.prompt_utils import apply_chat_template from mlx_vlm.utils import load_config # Load the model model_path = "mlx-community/Qwen2-VL-2B-Instruct-4bit" model, processor = load(model_path) config = load_config(model_path) # Prepare input image = ["http://images.cocodataset.org/val2017/000000039769.jpg"] # image = [Image.open("...")] can also be used with PIL.Image.Image objects prompt = "Describe this image." # Apply chat template formatted_prompt = apply_chat_template( processor, config, prompt, num_images=len(image) ) # Generate output output = generate(model, processor, formatted_prompt, image, verbose=False) print(output)from mlx_vlm import load, generate from mlx_vlm.prompt_utils import apply_chat_template from mlx_vlm.utils import load_config # Load model with audio support model_path = "mlx-community/gemma-3n-E2B-it-4bit" model, processor = load(model_path) config = model.config # Prepare audio input audio = ["/path/to/audio1.wav", "/path/to/audio2.mp3"] prompt = "Describe what you hear in these audio files." # Apply chat template with audio formatted_prompt = apply_chat_template( processor, config, prompt, num_audios=len(audio) ) # Generate output with audio output = generate(model, processor, formatted_prompt, audio=audio, verbose=False) print(output)from mlx_vlm import load, generate from mlx_vlm.prompt_utils import apply_chat_template from mlx_vlm.utils import load_config # Load multi-modal model model_path = "mlx-community/gemma-3n-E2B-it-4bit" model, processor = load(model_path) config = model.config # Prepare inputs image = ["/path/to/image.jpg"] audio = ["/path/to/audio.wav"] prompt = "" # Apply chat template formatted_prompt = apply_chat_template( processor, config, prompt, num_images=len(image), num_audios=len(audio) ) # Generate output output = generate(model, processor, formatted_prompt, image, audio=audio, verbose=False) print(output)Start the server:
mlx_vlm.serverThe server provides multiple endpoints for different use cases and supports dynamic model loading/unloading with caching (one model at a time).
/generate- Main generation endpoint with support for images, audio, and text/chat- Chat-style interaction endpoint/responses- OpenAI-compatible endpoint/health- Check server status/unload- Unload current model from memory
curl -X POST "http://localhost:8000/generate" \ -H "Content-Type: application/json" \ -d '{ "model": "mlx-community/Qwen2-VL-2B-Instruct-4bit", "prompt": "Hello, how are you?", "stream": true, "max_tokens": 100 }'curl -X POST "http://localhost:8000/generate" \ -H "Content-Type: application/json" \ -d '{ "model": "mlx-community/Qwen2.5-VL-32B-Instruct-8bit", "image": ["/path/to/repo/examples/images/renewables_california.png"], "prompt": "This is today'\''s chart for energy demand in California. Can you provide an analysis of the chart and comment on the implications for renewable energy in California?", "system": "You are a helpful assistant.", "stream": true, "max_tokens": 1000 }'curl -X POST "http://localhost:8000/generate" \ -H "Content-Type: application/json" \ -d '{ "model": "mlx-community/gemma-3n-E2B-it-4bit", "audio": ["/path/to/audio1.wav", "https://example.com/audio2.mp3"], "prompt": "Describe what you hear in these audio files", "stream": true, "max_tokens": 500 }'curl -X POST "http://localhost:8000/generate" \ -H "Content-Type: application/json" \ -d '{ "model": "mlx-community/gemma-3n-E2B-it-4bit", "image": ["/path/to/image.jpg"], "audio": ["/path/to/audio.wav"], "prompt": "", "max_tokens": 1000 }'curl -X POST "http://localhost:8000/chat" \ -H "Content-Type: application/json" \ -d '{ "model": "mlx-community/Qwen2-VL-2B-Instruct-4bit", "messages": [ { "role": "user", "content": "What is in this image?", "images": ["/path/to/image.jpg"] } ], "max_tokens": 100 }'curl -X POST "http://localhost:8000/responses" \ -H "Content-Type: application/json" \ -d '{ "model": "mlx-community/Qwen2-VL-2B-Instruct-4bit", "messages": [ { "role": "user", "content": [ {"type": "input_text", "text": "What is in this image?"}, {"type": "input_image", "image": "/path/to/image.jpg"} ] } ], "max_tokens": 100 }'model: Model identifier (required)prompt: Text prompt for generationimage: List of image URLs or local paths (optional)audio: List of audio URLs or local paths (optional, new)system: System prompt (optional)messages: Chat messages for chat/OpenAI endpointsmax_tokens: Maximum tokens to generatetemperature: Sampling temperaturetop_p: Top-p sampling parameterstream: Enable streaming responses
MLX-VLM supports analyzing multiple images simultaneously with select models. This feature enables more complex visual reasoning tasks and comprehensive analysis across multiple images in a single conversation.
from mlx_vlm import load, generate from mlx_vlm.prompt_utils import apply_chat_template from mlx_vlm.utils import load_config model_path = "mlx-community/Qwen2-VL-2B-Instruct-4bit" model, processor = load(model_path) config = model.config images = ["path/to/image1.jpg", "path/to/image2.jpg"] prompt = "Compare these two images." formatted_prompt = apply_chat_template( processor, config, prompt, num_images=len(images) ) output = generate(model, processor, formatted_prompt, images, verbose=False) print(output)mlx_vlm.generate --model mlx-community/Qwen2-VL-2B-Instruct-4bit --max-tokens 100 --prompt "Compare these images" --image path/to/image1.jpg path/to/image2.jpgMLX-VLM also supports video analysis such as captioning, summarization, and more, with select models.
The following models support video chat:
- Qwen2-VL
- Qwen2.5-VL
- Idefics3
- LLaVA
With more coming soon.
mlx_vlm.video_generate --model mlx-community/Qwen2-VL-2B-Instruct-4bit --max-tokens 100 --prompt "Describe this video" --video path/to/video.mp4 --max-pixels 224 224 --fps 1.0These examples demonstrate how to use multiple images with MLX-VLM for more complex visual reasoning tasks.
MLX-VLM supports fine-tuning models with LoRA and QLoRA.
To learn more about LoRA, please refer to the LoRA.md file.