Skip to content

MLX-VLM is a package for inference and fine-tuning of Vision Language Models (VLMs) on your Mac using MLX.

License

Notifications You must be signed in to change notification settings

Blaizzy/mlx-vlm

Repository files navigation

Upload Python Package

MLX-VLM

MLX-VLM is a package for inference and fine-tuning of Vision Language Models (VLMs) and Omni Models (VLMs with audio and video support) on your Mac using MLX.

Table of Contents

Installation

The easiest way to get started is to install the mlx-vlm package using pip:

pip install -U mlx-vlm

Usage

Command Line Interface (CLI)

Generate output from a model using the CLI:

# Text generation mlx_vlm.generate --model mlx-community/Qwen2-VL-2B-Instruct-4bit --max-tokens 100 --prompt "Hello, how are you?" # Image generation mlx_vlm.generate --model mlx-community/Qwen2-VL-2B-Instruct-4bit --max-tokens 100 --temperature 0.0 --image http://images.cocodataset.org/val2017/000000039769.jpg # Audio generation (New) mlx_vlm.generate --model mlx-community/gemma-3n-E2B-it-4bit --max-tokens 100 --prompt "Describe what you hear" --audio /path/to/audio.wav # Multi-modal generation (Image + Audio) mlx_vlm.generate --model mlx-community/gemma-3n-E2B-it-4bit --max-tokens 100 --prompt "Describe what you see and hear" --image /path/to/image.jpg --audio /path/to/audio.wav

Chat UI with Gradio

Launch a chat interface using Gradio:

mlx_vlm.chat_ui --model mlx-community/Qwen2-VL-2B-Instruct-4bit

Python Script

Here's an example of how to use MLX-VLM in a Python script:

import mlx.core as mx from mlx_vlm import load, generate from mlx_vlm.prompt_utils import apply_chat_template from mlx_vlm.utils import load_config # Load the model model_path = "mlx-community/Qwen2-VL-2B-Instruct-4bit" model, processor = load(model_path) config = load_config(model_path) # Prepare input image = ["http://images.cocodataset.org/val2017/000000039769.jpg"] # image = [Image.open("...")] can also be used with PIL.Image.Image objects prompt = "Describe this image." # Apply chat template formatted_prompt = apply_chat_template( processor, config, prompt, num_images=len(image) ) # Generate output output = generate(model, processor, formatted_prompt, image, verbose=False) print(output)

Audio Example

from mlx_vlm import load, generate from mlx_vlm.prompt_utils import apply_chat_template from mlx_vlm.utils import load_config # Load model with audio support model_path = "mlx-community/gemma-3n-E2B-it-4bit" model, processor = load(model_path) config = model.config # Prepare audio input audio = ["/path/to/audio1.wav", "/path/to/audio2.mp3"] prompt = "Describe what you hear in these audio files." # Apply chat template with audio formatted_prompt = apply_chat_template( processor, config, prompt, num_audios=len(audio) ) # Generate output with audio output = generate(model, processor, formatted_prompt, audio=audio, verbose=False) print(output)

Multi-Modal Example (Image + Audio)

from mlx_vlm import load, generate from mlx_vlm.prompt_utils import apply_chat_template from mlx_vlm.utils import load_config # Load multi-modal model model_path = "mlx-community/gemma-3n-E2B-it-4bit" model, processor = load(model_path) config = model.config # Prepare inputs image = ["/path/to/image.jpg"] audio = ["/path/to/audio.wav"] prompt = "" # Apply chat template formatted_prompt = apply_chat_template( processor, config, prompt, num_images=len(image), num_audios=len(audio) ) # Generate output output = generate(model, processor, formatted_prompt, image, audio=audio, verbose=False) print(output)

Server (FastAPI)

Start the server:

mlx_vlm.server

The server provides multiple endpoints for different use cases and supports dynamic model loading/unloading with caching (one model at a time).

Available Endpoints

  • /generate - Main generation endpoint with support for images, audio, and text
  • /chat - Chat-style interaction endpoint
  • /responses - OpenAI-compatible endpoint
  • /health - Check server status
  • /unload - Unload current model from memory

Usage Examples

Text Generation
curl -X POST "http://localhost:8000/generate" \ -H "Content-Type: application/json" \ -d '{  "model": "mlx-community/Qwen2-VL-2B-Instruct-4bit",  "prompt": "Hello, how are you?",  "stream": true,  "max_tokens": 100  }'
Image Generation
curl -X POST "http://localhost:8000/generate" \ -H "Content-Type: application/json" \ -d '{  "model": "mlx-community/Qwen2.5-VL-32B-Instruct-8bit",  "image": ["/path/to/repo/examples/images/renewables_california.png"],  "prompt": "This is today'\''s chart for energy demand in California. Can you provide an analysis of the chart and comment on the implications for renewable energy in California?",  "system": "You are a helpful assistant.",  "stream": true,  "max_tokens": 1000  }'
Audio Support (New)
curl -X POST "http://localhost:8000/generate" \ -H "Content-Type: application/json" \ -d '{  "model": "mlx-community/gemma-3n-E2B-it-4bit",  "audio": ["/path/to/audio1.wav", "https://example.com/audio2.mp3"],  "prompt": "Describe what you hear in these audio files",  "stream": true,  "max_tokens": 500  }'
Multi-Modal (Image + Audio)
curl -X POST "http://localhost:8000/generate" \ -H "Content-Type: application/json" \ -d '{  "model": "mlx-community/gemma-3n-E2B-it-4bit",  "image": ["/path/to/image.jpg"],  "audio": ["/path/to/audio.wav"],  "prompt": "",  "max_tokens": 1000  }'
Chat Endpoint
curl -X POST "http://localhost:8000/chat" \ -H "Content-Type: application/json" \ -d '{  "model": "mlx-community/Qwen2-VL-2B-Instruct-4bit",  "messages": [  {  "role": "user",  "content": "What is in this image?",  "images": ["/path/to/image.jpg"]  }  ],  "max_tokens": 100  }'
OpenAI-Compatible Endpoint
curl -X POST "http://localhost:8000/responses" \ -H "Content-Type: application/json" \ -d '{  "model": "mlx-community/Qwen2-VL-2B-Instruct-4bit",  "messages": [  {  "role": "user",  "content": [  {"type": "input_text", "text": "What is in this image?"},  {"type": "input_image", "image": "/path/to/image.jpg"}  ]  }  ],  "max_tokens": 100  }'

Request Parameters

  • model: Model identifier (required)
  • prompt: Text prompt for generation
  • image: List of image URLs or local paths (optional)
  • audio: List of audio URLs or local paths (optional, new)
  • system: System prompt (optional)
  • messages: Chat messages for chat/OpenAI endpoints
  • max_tokens: Maximum tokens to generate
  • temperature: Sampling temperature
  • top_p: Top-p sampling parameter
  • stream: Enable streaming responses

Multi-Image Chat Support

MLX-VLM supports analyzing multiple images simultaneously with select models. This feature enables more complex visual reasoning tasks and comprehensive analysis across multiple images in a single conversation.

Usage Examples

Python Script

from mlx_vlm import load, generate from mlx_vlm.prompt_utils import apply_chat_template from mlx_vlm.utils import load_config model_path = "mlx-community/Qwen2-VL-2B-Instruct-4bit" model, processor = load(model_path) config = model.config images = ["path/to/image1.jpg", "path/to/image2.jpg"] prompt = "Compare these two images." formatted_prompt = apply_chat_template( processor, config, prompt, num_images=len(images) ) output = generate(model, processor, formatted_prompt, images, verbose=False) print(output)

Command Line

mlx_vlm.generate --model mlx-community/Qwen2-VL-2B-Instruct-4bit --max-tokens 100 --prompt "Compare these images" --image path/to/image1.jpg path/to/image2.jpg

Video Understanding

MLX-VLM also supports video analysis such as captioning, summarization, and more, with select models.

Supported Models

The following models support video chat:

  1. Qwen2-VL
  2. Qwen2.5-VL
  3. Idefics3
  4. LLaVA

With more coming soon.

Usage Examples

Command Line

mlx_vlm.video_generate --model mlx-community/Qwen2-VL-2B-Instruct-4bit --max-tokens 100 --prompt "Describe this video" --video path/to/video.mp4 --max-pixels 224 224 --fps 1.0

These examples demonstrate how to use multiple images with MLX-VLM for more complex visual reasoning tasks.

Fine-tuning

MLX-VLM supports fine-tuning models with LoRA and QLoRA.

LoRA & QLoRA

To learn more about LoRA, please refer to the LoRA.md file.

About

MLX-VLM is a package for inference and fine-tuning of Vision Language Models (VLMs) on your Mac using MLX.

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Sponsor this project

 

Packages

No packages published

Languages