Skip to content

Commit ed8708a

Browse files
committed
add some dataset
1 parent 26a6a42 commit ed8708a

File tree

2 files changed

+77
-2
lines changed

2 files changed

+77
-2
lines changed

README.md

Lines changed: 29 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -8,6 +8,9 @@ Understanding the Application about Deep Learning in Text Matching Area & Implem
88
- [Richard Socher](http://www.socher.org/index.php/Main/HomePage)
99
- [Hang Li](http://www.hangli-hl.com/index.html)
1010

11+
## Survey
12+
> [深度文本匹配综述](http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CAPJLAST&filename=JSJX20160920002&uid=WEEvREcwSlJHSldRa1FhdXNXYXJvK0FZMlhXUDZsYnBMQjhHTElMeE1jRT0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4ggI8Fm4gTkoUKaID8j8gFw!!&v=MzA2OTFscVdNMENMTDdSN3FlWU9ac0ZDcmxWYnZPSTFzPUx6N0Jkckc0SDlmTXBvMUZaT3NOWXc5TXptUm42ajU3VDNm)
13+
<br>
1114
1215

1316
## Methods & Papers
@@ -19,7 +22,7 @@ Understanding the Application about Deep Learning in Text Matching Area & Implem
1922
-----
2023
> [**CDSSM**]()
2124
<br> [Learning Semantic Representations Using Convolutional Neural Networks for Web Search](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/www2014_cdssm_p07.pdf)
22-
<br> WWW 2014
25+
<br> WWW 2014, word hash + CNN + DNN
2326
----
2427

2528
> [**CLSM**]()
@@ -47,7 +50,8 @@ for Matching Natural Language Sentences](https://papers.nips.cc/paper/5550-convo
4750
<br> [Convolutional Neural Tensor Network
4851
Architecture for Community-based Question Answering](https://ijcai.org/Proceedings/15/Papers/188.pdf)
4952
<br> IJCAI 2015
50-
<br> (D)CNN+MLP(tensor layer); 基于语义表达的结构
53+
<br> (D)CNN+MLP(tensor layer);
54+
<br> 基于语义表达的结构
5155

5256

5357
## Related talks and papers
@@ -60,3 +64,26 @@ Natural Language Processing](https://www.microsoft.com/en-us/research/wp-content
6064
> [DSSM/Sent2Vec Release Version](https://www.microsoft.com/en-us/download/details.aspx?id=52365)
6165
<br> MSRA发布的Sent2Vec发行版
6266
67+
## Datasets
68+
* [Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks](http://arxiv.org/abs/1502.05698 "Jason Weston, Antoine Bordes, Sumit Chopra, Tomas Mikolov, Alexander M. Rush") ([fb.ai/babi](http://fb.ai/babi))
69+
* [Teaching Machines to Read and Comprehend](http://arxiv.org/abs/1506.03340 "Karl Moritz Hermann, Tomáš Kočiský, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman, Phil Blunsom") ([github.com/deepmind/rc-data](https://github.com/deepmind/rc-data))
70+
* [One Billion Word Benchmark for Measuring Progress in Statistical Language Modeling](http://arxiv.org/abs/1312.3005 "Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn, Tony Robinson") ([github.com/ciprian-chelba/1-billion-word-language-modeling-benchmark](https://github.com/ciprian-chelba/1-billion-word-language-modeling-benchmark))
71+
* [The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems](http://arxiv.org/abs/1506.08909 "Ryan Lowe, Nissan Pow, Iulian Serban, Joelle Pineau") ([cs.mcgill.ca/~jpineau/datasets/ubuntu-corpus-1.0](http://cs.mcgill.ca/~jpineau/datasets/ubuntu-corpus-1.0/))
72+
* [Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books](http://arxiv.org/abs/1506.06724 "Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, Sanja Fidler") ([BookCorpus](http://www.cs.toronto.edu/~mbweb/))
73+
* [Every publicly available Reddit comment, for research.](https://www.reddit.com/r/datasets/comments/3bxlg7/i_have_every_publicly_available_reddit_comment/ "Stuck_In_the_Matrix")
74+
* [Stack Exchange Data Dump](https://archive.org/details/stackexchange "Stack Exchange")
75+
* [Europarl: A Parallel Corpus for Statistical Machine Translation](http://www.iccs.inf.ed.ac.uk/~pkoehn/publications/europarl-mtsummit05.pdf "Philipp Koehn") ([www.statmt.org/europarl/](http://www.statmt.org/europarl/))
76+
* [RTE Knowledge Resources](http://aclweb.org/aclwiki/index.php?title=RTE_Knowledge_Resources)
77+
78+
79+
## Pretrained Models
80+
* [Model Zoo](https://github.com/BVLC/caffe/wiki/Model-Zoo "Berkeley Vision and Learning Center")
81+
* [word2vec](https://code.google.com/p/word2vec/ "Tomas Mikolov")
82+
* [GoogleNews-vectors-negative300.bin.gz](https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing)
83+
* [freebase-vectors-skipgram1000.bin.gz](https://docs.google.com/file/d/0B7XkCwpI5KDYaDBDQm1tZGNDRHc/edit?usp=sharing)
84+
* [GloVe](http://nlp.stanford.edu/projects/glove/ "Jeffrey Pennington, Richard Socher, Christopher D. Manning")
85+
* [SENNA](http://ronan.collobert.com/senna/ "R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, P. Kuksa")
86+
87+
88+
## References
89+
https://github.com/robertsdionne/neural-network-papers/blob/master/README.md

helper/game.py

Lines changed: 48 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,48 @@
1+
#coding=utf-8
2+
3+
ans = []
4+
def find_path(maze):
5+
dir = [[-1, 0], [0, 1], [1, 0], [0, -1]]
6+
hav = [ [0] * 5 for _ in range(5) ]
7+
global ans
8+
ans = []
9+
resutl = 0
10+
11+
def next(x, y, num):
12+
13+
if num == 24:
14+
resutl = 1
15+
print 'Found'
16+
return
17+
for one in dir:
18+
x_ = x + one[0]
19+
y_ = y + one[1]
20+
if (x_>=0 and x_<5) and (y_ >=0 and y_ < 5):
21+
if not hav[x_][y_] and maze[x_][y_] == 1:
22+
global ans
23+
ans.append((x_, y_))
24+
hav[x_][y_] = 1
25+
next(x_, y_, num+1)
26+
hav[x_][y_] = 0
27+
ans = ans[:-1]
28+
29+
for i in range(5):
30+
for j in range(5):
31+
if (i == 0) and (j == 1):
32+
continue
33+
hav[i][j] = 1
34+
next(i, j, 1)
35+
ans.append((i, j))
36+
if resutl :
37+
print ans
38+
return
39+
ans = []
40+
hav[i][j] = 0
41+
42+
43+
44+
45+
if __name__ == '__main__':
46+
map = [ [1] * 5 for _ in range(5)]
47+
map[0][1] = 0
48+
find_path(map)

0 commit comments

Comments
 (0)