Skip to content

Commit a83486d

Browse files
committed
complete DSSM
1 parent 1382be9 commit a83486d

File tree

1 file changed

+6
-6
lines changed

1 file changed

+6
-6
lines changed

README.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -12,33 +12,33 @@ Understanding the Application about Deep Learning in Text Matching Area & Implem
1212

1313
## Methods & Papers
1414

15-
- > [**DSSM**](./DSSM/dssm.py)
15+
> [**DSSM**](./DSSM/dssm.py)
1616
[Learning Deep Structured Semantic Models for Web Search using Clickthrough Data](https://posenhuang.github.io/papers/cikm2013_DSSM_fullversion.pdf)
1717
<br> CIKM 2013
1818
<br> 词袋模型,基于语义表达的结构, word hash + DNN
1919

20-
- > [**CDSSM**]() [Learning Semantic Representations Using Convolutional Neural Networks for Web Search](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/www2014_cdssm_p07.pdf)
20+
> [**CDSSM**]() [Learning Semantic Representations Using Convolutional Neural Networks for Web Search](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/www2014_cdssm_p07.pdf)
2121
<br> WWW 2014
2222
23-
- > [**CLSM**]() [A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/cikm2014_cdssm_final.pdf)
23+
> [**CLSM**]() [A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/cikm2014_cdssm_final.pdf)
2424
<br> CIKM 2014
2525
<br> 基于匹配的结构, word hash + CNN, CLSM和C-DSSM有什么区别呢
2626
27-
- > [**DSSM的应用**]() [Modeling Interestingness with Deep Neural Networks](https://www.microsoft.com/en-us/research/wp-content/uploads/2014/10/604_Paper.pdf)
27+
> [**DSSM的应用**]() [Modeling Interestingness with Deep Neural Networks](https://www.microsoft.com/en-us/research/wp-content/uploads/2014/10/604_Paper.pdf)
2828
<br> EMNLP 2014
2929
<br> DSSM应用于文本分析,在automatic highlighting和contextual entity search问题上效果好。
3030
<br> 主要有两点贡献:
3131
<br> 1) DSSM + CNN
3232
<br> 2) 不针对相关性,加了一个ranker
3333
3434

35-
- > [**ARC-I/ARC-II**]()
35+
> [**ARC-I/ARC-II**]()
3636
[Convolutional Neural Network Architectures
3737
for Matching Natural Language Sentences](https://papers.nips.cc/paper/5550-convolutional-neural-network-architectures-for-matching-natural-language-sentences.pdf)
3838
<br> NIPS 2014
3939
<br> CNN的基于语义表达和基于匹配的两种结构; 增加了门解决句子长度不一致问题
4040

41-
- > [**CNTN**]() [Convolutional Neural Tensor Network
41+
> [**CNTN**]() [Convolutional Neural Tensor Network
4242
Architecture for Community-based Question Answering](https://ijcai.org/Proceedings/15/Papers/188.pdf)
4343
<br> IJCAI 2015
4444
<br> (D)CNN+MLP(tensor layer); 基于语义表达的结构

0 commit comments

Comments
 (0)