Skip to content

Commit f72f758

Browse files
authored
Merge pull request microsoft#305 from koreyspace/main
Fixed typos
2 parents 47b68c3 + 92351ea commit f72f758

File tree

67 files changed

+507
-1020
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

67 files changed

+507
-1020
lines changed

00-course-setup/SETUP.md

Lines changed: 27 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
# Setup Your Dev Environment
22

3-
We have instrumented this repository with a _dev container_ that comes with a Python 3 runtime. Simply open the repo in GitHub Codespaces or on your local Docker Desktop, to activate the runtime automatically. Then open th Jupyter notebook and select the Python 3.x kernel to prepare the Notebook for execution.
3+
We have setup this repository and course with a _dev container_ that comes with a Python 3 runtime. Open the repo in GitHub Codespaces or on your local Docker Desktop, to activate the runtime automatically. Then open th Jupyter notebook and select the Python 3.x kernel to prepare the Notebook for execution.
44

55
## 1. Create `.env` file
66

@@ -10,18 +10,20 @@ To configure this, we need to setup local environment variables for Azure as fol
1010

1111
1. Look in the root folder for a `.env.copy` file. It should contain a list of name-value pairs like this:
1212

13-
```bash
14-
AZURE_OPENAI_ENDPOINT='<add your endpoint here>'
15-
AZURE_OPENAI_DEPLOYMENT='<add your deployment name here>'
16-
AZURE_OPENAI_KEY='<add your key here>'
17-
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT='<add your deployment name here>'
18-
```
13+
```bash
14+
AZURE_OPENAI_ENDPOINT='<add your endpoint here>'
15+
AZURE_OPENAI_DEPLOYMENT='<add your deployment name here>'
16+
AZURE_OPENAI_KEY='<add your key here>'
17+
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT='<add your deployment name here>'
18+
```
1919

2020
2. Make a copy of that file called `.env` using a command like this at the terminal:
21-
```bash
22-
cp .env.copy .env
23-
```
24-
This should create an identical copy _except that this file is .gitignore-d and will never get checked into source control_. We can now populate **this .env file** with the environment variable values (secrets) without fear of them being checked in accidentally. You can now move to the next section to start populating these variables.
21+
22+
```bash
23+
cp .env.copy .env
24+
```
25+
26+
This should create an identical copy _except that this file is .gitignore-d and will never get checked into source control_. We can now populate **this .env file** with the environment variable values (secrets) without fear of them being checked in accidentally. You can now move to the next section to start populating these variables.
2527

2628
3. (Option) If you use GitHub Codespaces, you have the option to save environment variables as _Codespaces secrets_ associated with this repository. In that case, you won't need to setup a local .env file. **However, note that this option works only if you use GitHub Codespaces.** You will still need to setup the .env file if you use Docker Desktop instead.
2729

@@ -31,35 +33,35 @@ The above steps should be executed also if you are using the non-Azure OpenAI en
3133
OPENAI_API_KEY='<add your OpenAI key here>'
3234
```
3335

34-
3536
## 2. Populate `.env` file
3637

3738
Let's take a quick look at the variable names to understand what they represent:
3839

39-
| Variable | Description |
40-
|:---|:---|
41-
|AZURE_OPENAI_ENDPOINT| This is the deployed endpoint for an Azure OpenAI resource|
42-
|AZURE_OPENAI_KEY | This is the authorization key for using that service |
43-
|OPENAI_API_KEY | This is the authorization key for using the service for non-Azure OpenAI endpoints |
44-
|AZURE_OPENAI_DEPLOYMENT| This is the _text generation_ model deployment endpoint |
45-
|AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT | This is the _text embeddings_ model deployment endpoint |
46-
| | |
40+
| Variable | Description |
41+
| :--------------------------------- | :--------------------------------------------------------------------------------- |
42+
| AZURE_OPENAI_ENDPOINT | This is the deployed endpoint for an Azure OpenAI resource |
43+
| AZURE_OPENAI_KEY | This is the authorization key for using that service |
44+
| OPENAI_API_KEY | This is the authorization key for using the service for non-Azure OpenAI endpoints |
45+
| AZURE_OPENAI_DEPLOYMENT | This is the _text generation_ model deployment endpoint |
46+
| AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT | This is the _text embeddings_ model deployment endpoint |
47+
| | |
4748

4849
For context, the last two variables refer to specific models that are used in chat completion (text generation model) and vector search (embeddings model) activities that are frequently used in generative AI applications. In the following sections, we'll locate the _values_ for these variables and set them in `.env` (replacing the content within the `' '`, but preserving the quotes).
4950

5051
### 2.1 Use Azure Portal
5152

5253
The Azure OpenAI endpoint and key values will be found in the [Azure Portal](https://portal.azure.com?WT.mc_id=academic-105485-koreyst) so let's start there.
5354

54-
1. Navigate to the [Azure Portal](https://portal.azure.com?WT.mc_id=academic-105485-koreyst)
55+
1. Go to the [Azure Portal](https://portal.azure.com?WT.mc_id=academic-105485-koreyst)
5556
1. Click the **Keys and Endpoint** option in the sidebar (menu at left).
5657
1. Click **Show Keys** - you should see the following: KEY 1, KEY 2 and Endpoint.
5758
1. Use the KEY 1 value for AZURE_OPENAI_KEY
5859
1. Use the Endpoint value for AZURE_OPENAI_ENDPOINT
5960

6061
Next, we need the endpoints for the specific models we've deployed.
62+
6163
1. Click the **Model deployments** option in the sidebar (left menu) for Azure OpenAI resource.
62-
1. In the destination page, click **Manage Deployments**
64+
1. In the destination page, click **Manage Deployments**
6365

6466
This will take you to the Azure OpenAI Studio website, where we'll find the other values as described below.
6567

@@ -74,11 +76,12 @@ This will take you to the Azure OpenAI Studio website, where we'll find the othe
7476
Now update the environment variables to reflect the _Deployment name_ used. This will typically be the same as the model name unless you changed it explcitly. So, as an example, you might have:
7577

7678
```bash
77-
AZURE_OPENAI_DEPLOYMENT='gpt-35-turbo'
79+
AZURE_OPENAI_DEPLOYMENT='gpt-35-turbo'
7880
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT='text-embedding-ada-002'
7981
```
8082

8183
**Don't forget to save the .env file when done**. You can now exit the file and return to the instructions for running the notebook.
8284

8385
### 2.3 Use OpenAI Public API
84-
Your OpenAI API key can be found in your [OpenAI account](https://platform.openai.com/api-keys?WT.mc_id=academic-105485-koreyst). If you don't have one, you can sign up for an account and create an API key. Once you have the key, you can use it to populate the `OPENAI_API_KEY` variable in the `.env` file.
86+
87+
Your OpenAI API key can be found in your [OpenAI account](https://platform.openai.com/api-keys?WT.mc_id=academic-105485-koreyst). If you don't have one, you can sign up for an account and create an API key. Once you have the key, you can use it to populate the `OPENAI_API_KEY` variable in the `.env` file.

01-introduction-to-genai/translations/cn/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -131,6 +131,6 @@ _(点击该图片看本章导学视频)_
131131

132132
## 继续您的学习旅程
133133

134-
想要了解更多关于不同的生成人工智能概念吗? 请到[进阶学习的页面](../../../13-continued-learning/translations/cn/README.md?WT.mc_id=academic-105485-koreyst) 查找有关此主题的其他学习资源。
134+
想要了解更多关于不同的生成人工智能概念吗? 请到[进阶学习的页面](https://aka.ms/genai-collection?WT.mc_id=academic-105485-koreyst) 查找有关此主题的其他学习资源。
135135

136136
前往第二章,我们将了解如何[探索和比较不同的 LLM 类型](../../../02-exploring-and-comparing-different-llms/translations/cn/README.md?WT.mc_id=academic-105485-koreyst)

01-introduction-to-genai/translations/pt-br/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -131,6 +131,6 @@ O que é verdade sobre Grandes Modelos de Linguagem?
131131

132132
## Ótimo trabalho! A Jornada Continua
133133

134-
Deseja aprender mais sobre diferentes conceitos de IA Generativa? Acesse a [página de Aprendizado Contínuo](../../../13-continued-learning/translations/pt-br/README.md?WT.mc_id=academic-105485-koreyst) para encontrar outros ótimos recursos sobre este tópico.
134+
Deseja aprender mais sobre diferentes conceitos de IA Generativa? Acesse a [página de Aprendizado Contínuo](https://aka.ms/genai-collection?WT.mc_id=academic-105485-koreyst) para encontrar outros ótimos recursos sobre este tópico.
135135

136136
Vá para a Lição 2, onde veremos como [Explorar e comparar diferentes tipos de LLM](../../../02-exploring-and-comparing-different-llms/translations/pt-br/README.md?WT.mc_id=academic-105485-koreyst)!

02-exploring-and-comparing-different-llms/translations/cn/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -193,6 +193,6 @@ A:3,如果您有时间和资源以及高质量的数据,微调是保持最
193193

194194
## 继续您的学习旅程
195195

196-
想要了解更多关于不同的生成人工智能概念吗? 转至[进阶学习的页面](../../../13-continued-learning/translations/cn/README.md?WT.mc_id=academic-105485-koreyst) 查找有关本章的其他重要资源。
196+
想要了解更多关于不同的生成人工智能概念吗? 转至[进阶学习的页面](https://aka.ms/genai-collection?WT.mc_id=academic-105485-koreyst) 查找有关本章的其他重要资源。
197197

198198
前往第三章,我们将了解如何[负责任地使用生成式 AI 进行应用构建](../../../03-using-generative-ai-responsibly/translations/cn/README.md?WT.mc_id=academic-105485-koreyst)

02-exploring-and-comparing-different-llms/translations/pt-br/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -194,6 +194,6 @@ Saiba mais sobre como você pode [usar o RAG](https://learn.microsoft.com/azure/
194194

195195
## Ótimo Trabalho, Continue com Seu Aprendizado
196196

197-
Deseja aprender mais sobre diferentes conceitos de IA Generativa? Acesse a [página de aprendizado contínuo](../../../13-continued-learning/translations/pt-br/README.md?WT.mc_id=academic-105485-koreyst) para encontrar outros ótimos recursos sobre este tópico.
197+
Deseja aprender mais sobre diferentes conceitos de IA Generativa? Acesse a [página de aprendizado contínuo](https://aka.ms/genai-collection?WT.mc_id=academic-105485-koreyst) para encontrar outros ótimos recursos sobre este tópico.
198198

199199
Vamos para a Lição 3, onde veremos como podemos [Criar IA Generativa de forma Responsável](../../../03-using-generative-ai-responsibly/translations/pt-br/README.md?WT.mc_id=academic-105485-koreyst)!

03-using-generative-ai-responsibly/translations/cn/README.md

Lines changed: 4 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
# 第三章 : 负责任地使用生成式人工智能
22

3-
[![Using Generative AI Responsibly](../../images/03-lesson-banner.png?WT.mc_id=academic-105485-koreyst)]()
3+
[![Using Generative AI Responsibly](../../images/03-lesson-banner.png?WT.mc_id=academic-105485-koreyst)]()
44

55
> **导学视频即将上架,敬请期待**
66
@@ -46,7 +46,7 @@
4646

4747
![提示说“谁是泰坦尼克号的唯一幸存者”](../../../03-using-generative-ai-responsibly/images/ChatGPT-titanic-survivor-prompt.webp?WT.mc_id=academic-105485-koreyst)
4848

49-
> *(来源:[飞翔的野牛](https://flyingbisons.com?WT.mc_id=academic-105485-koreyst))*
49+
> _(来源:[飞翔的野牛](https://flyingbisons.com?WT.mc_id=academic-105485-koreyst))_
5050
5151
给出了一个非常确切的答案。 不幸的是,这是不正确的。 即使极少了解,人们也会发现泰坦尼克号幸存者不止一名。 但对于刚开始研究这个领域的学生来说,这个答案足以有说服力,不会被质疑并被视为事实。 这样做的后果可能会导致人工智能系统不可靠,并对我们初创公司的声誉产生负面影响。
5252

@@ -120,15 +120,14 @@
120120
2. 有害使用,即人工智能不用于犯罪目的。
121121
3. 确保人工智能不存在偏见和歧视。
122122

123-
答:2和3是正确的。 负责任的人工智能可以帮助您考虑如何减轻有害影响和偏见等。
123+
答:2 和 3 是正确的。 负责任的人工智能可以帮助您考虑如何减轻有害影响和偏见等。
124124

125125
## 🚀 知识拓展
126126

127127
阅读 [Azure AI 内容安全](https://learn.microsoft.com/azure/ai-services/content-safety/overview?WT.mc_id=academic-105485-koreyst) 并了解您可以采用什么方法。
128128

129129
## 继续学习
130130

131-
想要了解更多有关如何负责任地使用生成式 AI 进行构建的信息? 转至[进阶学习的页面](../../../13-continued-learning/translations/cn/README.md?WT.mc_id=academic-105485-koreyst) 查找有关本章的其他重要资源。
131+
想要了解更多有关如何负责任地使用生成式 AI 进行构建的信息? 转至[进阶学习的页面](https://aka.ms/genai-collection?WT.mc_id=academic-105485-koreyst) 查找有关本章的其他重要资源。
132132

133133
前往第四章,我们将了解 [提示工程基础](../../../04-prompt-engineering-fundamentals/translations/cn/README.md?WT.mc_id=academic-105485-koreyst)
134-

03-using-generative-ai-responsibly/translations/pt-br/README.md

Lines changed: 6 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
# Usando a IA Generativa de Forma Responsável
22

3-
[![Usando a IA Generativa de Forma Responsável](../../images/03-lesson-banner.png?WT.mc_id=academic-105485-koreyst)]()
3+
[![Usando a IA Generativa de Forma Responsável](../../images/03-lesson-banner.png?WT.mc_id=academic-105485-koreyst)]()
44

55
> **Vídeo em Breve**
66
@@ -44,9 +44,9 @@ Vamos dar, por exemplo, a criação de um recurso para nossa startup que permite
4444

4545
O modelo produz uma resposta como a que está abaixo:
4646

47-
![Prompt dizendo "Quem foi o único sobrevivente do Titanic"](../../../03-using-generative-ai-responsibly/images/2135-ChatGPT(1)_11zon.webp?WT.mc_id=academic-105485-koreyst)
47+
![Prompt dizendo "Quem foi o único sobrevivente do Titanic"](<../../../03-using-generative-ai-responsibly/images/2135-ChatGPT(1)_11zon.webp?WT.mc_id=academic-105485-koreyst>)
4848

49-
> *(Fonte: [Flying bisons](https://flyingbisons.com?WT.mc_id=academic-105485-koreyst))*
49+
> _(Fonte: [Flying bisons](https://flyingbisons.com?WT.mc_id=academic-105485-koreyst))_
5050
5151
Esta é uma resposta muito confiante e completa. Infelizmente, está incorreta. Mesmo com uma quantidade mínima de pesquisa, alguém descobriria que houve mais de um sobrevivente do Titanic. Para um estudante que está começando a pesquisar esse tópico, essa resposta pode ser persuasiva o suficiente para não ser questionada e tratada como fato. As consequências disso podem levar ao sistema de IA sendo pouco confiável e impactar negativamente a reputação de nossa startup.
5252

@@ -96,7 +96,7 @@ Agora é hora de encontrar maneiras de prevenir ou limitar o dano potencial caus
9696

9797
- **Metaprompt**: metaprompts e fundamentação são maneiras de direcionar ou limitar o modelo com base em determinados comportamentos e informações. Isso poderia ser o uso de entradas do sistema para definir certos limites do modelo. Além disso, fornecer saídas mais relevantes para o escopo ou domínio do sistema.
9898

99-
Também pode ser o uso de técnicas como a Recuperação de Geração Aumentada (RAG) para fazer com que o modelo obtenha informações apenas de uma seleção de fontes confiáveis. Há uma lição posterior neste curso para [criar aplicações de busca](../../../08-building-search-applications/translations/pt-br/README.md?WT.mc_id=academic-105485-koreyst)
99+
Também pode ser o uso de técnicas como a Recuperação de Geração Aumentada (RAG) para fazer com que o modelo obtenha informações apenas de uma seleção de fontes confiáveis. Há uma lição posterior neste curso para [criar aplicações de busca](../../../08-building-search-applications/translations/pt-br/README.md?WT.mc_id=academic-105485-koreyst)
100100

101101
- **Experiência do Usuário**: a camada final é onde o usuário interage diretamente com o modelo por meio da interface de nosso aplicativo de alguma forma. Dessa forma, podemos projetar a UI/UX para limitar o usuário quanto aos tipos de entradas que podem enviar ao modelo, bem como ao texto ou imagens exibidos ao usuário. Ao implantar o aplicativo de IA, também devemos ser transparentes sobre o que nossa aplicação de IA Generativa pode e não pode fazer.
102102

@@ -110,7 +110,7 @@ Criar uma prática operacional em torno de suas aplicações de IA é a etapa fi
110110

111111
## Ferramentas
112112

113-
Embora o trabalho de desenvolver soluções de IA Responsável possa parecer muito, porém é um trabalho que vale a pena. À medida que a área de IA Generativa cresce, mais ferramentas para ajudar os desenvolvedores a integrar eficientemente a responsabilidade em seus fluxos de trabalho amadurecerão. Por exemplo, o [Azure AI Content Safety](https://learn.microsoft.com/azure/ai-services/content-safety/overview?WT.mc_id=academic-105485-koreyst ) pode ajudar a detectar conteúdo e imagens prejudiciais por meio de uma solicitação de API.
113+
Embora o trabalho de desenvolver soluções de IA Responsável possa parecer muito, porém é um trabalho que vale a pena. À medida que a área de IA Generativa cresce, mais ferramentas para ajudar os desenvolvedores a integrar eficientemente a responsabilidade em seus fluxos de trabalho amadurecerão. Por exemplo, o [Azure AI Content Safety](https://learn.microsoft.com/azure/ai-services/content-safety/overview?WT.mc_id=academic-105485-koreyst) pode ajudar a detectar conteúdo e imagens prejudiciais por meio de uma solicitação de API.
114114

115115
## Verificação de Conhecimento
116116

@@ -128,7 +128,6 @@ Leia sobre o [Azure AI Content Safety](https://learn.microsoft.com/azure/ai-serv
128128

129129
## Ótimo Trabalho, Continue Sua Aprendizagem
130130

131-
Quer aprender mais sobre como construir com IA Generativa de forma responsável? Acesse a [página de aprendizado contínuo](../../../13-continued-learning/translations/pt-br/README.md?WT.mc_id=academic-105485-koreyst) para encontrar outros ótimos recursos sobre esse tópico.
131+
Quer aprender mais sobre como construir com IA Generativa de forma responsável? Acesse a [página de aprendizado contínuo](https://aka.ms/genai-collection?WT.mc_id=academic-105485-koreyst) para encontrar outros ótimos recursos sobre esse tópico.
132132

133133
Vamos agora para a Lição 4, onde exploraremos os [Fundamentos da Engenharia de Prompt](../../../04-prompt-engineering-fundamentals/translations/pt-br/README.md?WT.mc_id=academic-105485-koreyst)!
134-

04-prompt-engineering-fundamentals/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -385,6 +385,6 @@ See if you can leverage the "cue" technique with the prompt: Complete the senten
385385

386386
## Great Work! Continue Your Learning
387387

388-
Want to learn more about different Prompt Engineering concepts? Go to the [continued learning page](../13-continued-learning/README.md?WT.mc_id=academic-105485-koreyst) to find other great resources on this topic.
388+
Want to learn more about different Prompt Engineering concepts? Go to the [continued learning page](https://aka.ms/genai-collection?WT.mc_id=academic-105485-koreyst) to find other great resources on this topic.
389389

390390
Head over to Lesson 5 where we will look at [advanced prompting techniques](../05-advanced-prompts/README.md?WT.mc_id=academic-105485-koreyst)!

04-prompt-engineering-fundamentals/translations/cn/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -386,6 +386,6 @@ Wrap the section with a summary and resources for self-guided learning.
386386

387387
## 继续学习
388388

389-
想要了解更多有关不同提示工程概念的信息吗? 转至[进阶学习的页面](../../../13-continued-learning/translations/cn/README.md?WT.mc_id=academic-105485-koreyst) 查找有关此章节的其他重要资源。
389+
想要了解更多有关不同提示工程概念的信息吗? 转至[进阶学习的页面](https://aka.ms/genai-collection?WT.mc_id=academic-105485-koreyst) 查找有关此章节的其他重要资源。
390390

391391
前往第五章学习,我们将了解[创建高级的提示工程技巧](../../../05-advanced-prompts/translations/cn/README.md?WT.mc_id=academic-105485-koreyst)

0 commit comments

Comments
 (0)