import numpy as np import wandb # Define class names for wildlife wildlife_class_names = ["Lion", "Tiger", "Elephant", "Zebra"] # Simulate true labels for 200 animal images (imbalanced distribution) wildlife_y_true = np.random.choice( [0, 1, 2, 3], size=200, p=[0.2, 0.3, 0.25, 0.25], ) # Simulate model predictions with 85% accuracy wildlife_preds = [ y_t if np.random.rand() < 0.85 else np.random.choice([x for x in range(4) if x != y_t]) for y_t in wildlife_y_true ] # Initialize W&B run and log confusion matrix with wandb.init(project="wildlife_classification") as run: confusion_matrix = wandb.plot.confusion_matrix( preds=wildlife_preds, y_true=wildlife_y_true, class_names=wildlife_class_names, title="Simulated Wildlife Classification Confusion Matrix", ) run.log({"wildlife_confusion_matrix": confusion_matrix})