Define a sweep configuration

Learn how to create configuration files for sweeps.

A W&B Sweep combines a strategy for exploring hyperparameter values with the code that evaluates them. The strategy can be as simple as trying every option or as complex as Bayesian Optimization and Hyperband (BOHB).

Define a sweep configuration either in a Python dictionary or a YAML file. How you define your sweep configuration depends on how you want to manage your sweep.

The following guide describes how to format your sweep configuration. See Sweep configuration options for a comprehensive list of top-level sweep configuration keys.

Basic structure

Both sweep configuration format options (YAML and Python dictionary) utilize key-value pairs and nested structures.

Use top-level keys within your sweep configuration to define qualities of your sweep search such as the name of the sweep (name key), the parameters to search through (parameters key), the methodology to search the parameter space (method key), and more.

For example, the proceeding code snippets show the same sweep configuration defined within a YAML file and within a Python dictionary. Within the sweep configuration there are five top level keys specified: program, name, method, metric and parameters.

Define a sweep configuration in a YAML file if you want to manage sweeps interactively from the command line (CLI)

program: train.py name: sweepdemo method: bayes metric:  goal: minimize  name: validation_loss parameters:  learning_rate:  min: 0.0001  max: 0.1  batch_size:  values: [16, 32, 64]  epochs:  values: [5, 10, 15]  optimizer:  values: ["adam", "sgd"] 

Define a sweep in a Python dictionary data structure if you define training algorithm in a Python script or notebook.

The proceeding code snippet stores a sweep configuration in a variable named sweep_configuration:

sweep_configuration = {  "name": "sweepdemo",  "method": "bayes",  "metric": {"goal": "minimize", "name": "validation_loss"},  "parameters": {  "learning_rate": {"min": 0.0001, "max": 0.1},  "batch_size": {"values": [16, 32, 64]},  "epochs": {"values": [5, 10, 15]},  "optimizer": {"values": ["adam", "sgd"]},  }, } 

Within the top level parameters key, the following keys are nested: learning_rate, batch_size, epoch, and optimizer. For each of the nested keys you specify, you can provide one or more values, a distribution, a probability, and more. For more information, see the parameters section in Sweep configuration options.

Double nested parameters

Sweep configurations support nested parameters. To delineate a nested parameter, use an additional parameters key under the top level parameter name. Sweep configs support multi-level nesting.

Specify a probability distribution for your random variables if you use a Bayesian or random hyperparameter search. For each hyperparameter:

  1. Create a top level parameters key in your sweep config.
  2. Within the parameterskey, nest the following:
    1. Specify the name of hyperparameter you want to optimize.
    2. Specify the distribution you want to use for the distribution key. Nest the distribution key-value pair underneath the hyperparameter name.
    3. Specify one or more values to explore. The value (or values) should be inline with the distribution key.
      1. (Optional) Use an additional parameters key under the top level parameter name to delineate a nested parameter.

Sweep configuration template

The following template shows how you can configure parameters and specify search constraints. Replace hyperparameter_name with the name of your hyperparameter and any values enclosed in <>.

program: <insert> method: <insert> parameter:  hyperparameter_name0:  value: 0  hyperparameter_name1:  values: [0, 0, 0]  hyperparameter_name:  distribution: <insert>  value: <insert>  hyperparameter_name2:  distribution: <insert>  min: <insert>  max: <insert>  q: <insert>  hyperparameter_name3:  distribution: <insert>  values:  - <list_of_values>  - <list_of_values>  - <list_of_values> early_terminate:  type: hyperband  s: 0  eta: 0  max_iter: 0 command: - ${Command macro} - ${Command macro} - ${Command macro} - ${Command macro}  

To express a numeric value using scientific notation, add the YAML !!float operator, which casts the value to a floating point number. For example, min: !!float 1e-5. See Command example.

Sweep configuration examples

program: train.py method: random metric:  goal: minimize  name: loss parameters:  batch_size:  distribution: q_log_uniform_values  max: 256  min: 32  q: 8  dropout:  values: [0.3, 0.4, 0.5]  epochs:  value: 1  fc_layer_size:  values: [128, 256, 512]  learning_rate:  distribution: uniform  max: 0.1  min: 0  optimizer:  values: ["adam", "sgd"] 
sweep_config = {  "method": "random",  "metric": {"goal": "minimize", "name": "loss"},  "parameters": {  "batch_size": {  "distribution": "q_log_uniform_values",  "max": 256,  "min": 32,  "q": 8,  },  "dropout": {"values": [0.3, 0.4, 0.5]},  "epochs": {"value": 1},  "fc_layer_size": {"values": [128, 256, 512]},  "learning_rate": {"distribution": "uniform", "max": 0.1, "min": 0},  "optimizer": {"values": ["adam", "sgd"]},  }, } 

Bayes hyperband example

program: train.py method: bayes metric:  goal: minimize  name: val_loss parameters:  dropout:  values: [0.15, 0.2, 0.25, 0.3, 0.4]  hidden_layer_size:  values: [96, 128, 148]  layer_1_size:  values: [10, 12, 14, 16, 18, 20]  layer_2_size:  values: [24, 28, 32, 36, 40, 44]  learn_rate:  values: [0.001, 0.01, 0.003]  decay:  values: [1e-5, 1e-6, 1e-7]  momentum:  values: [0.8, 0.9, 0.95]  epochs:  value: 27 early_terminate:  type: hyperband  s: 2  eta: 3  max_iter: 27 

The proceeding tabs show how to specify either a minimum or maximum number of iterations for early_terminate:

The brackets for this example are: [3, 3*eta, 3*eta*eta, 3*eta*eta*eta], which equals [3, 9, 27, 81].

early_terminate:  type: hyperband  min_iter: 3 

The brackets for this example are [27/eta, 27/eta/eta], which equals [9, 3].

early_terminate:  type: hyperband  max_iter: 27  s: 2 

Macro and custom command arguments example

For more complex command line arguments, you can use macros to pass environment variables, the Python interpreter, and additional arguments. W&B supports pre defined macros and custom command line arguments that you can specify in your sweep configuration.

For example, the following sweep configuration (sweep.yaml) defines a command that runs a Python script (run.py) with the ${env}, ${interpreter}, and ${program} macros replaced with the appropriate values when the sweep runs.

The --batch_size=${batch_size}, --test=True, and --optimizer=${optimizer} arguments use custom macros to pass the values of the batch_size, test, and optimizer parameters defined in the sweep configuration.

program: run.py method: random metric:  name: validation_loss parameters:  learning_rate:  min: 0.0001  max: 0.1 command:  - ${env}  - ${interpreter}  - ${program}  - "--batch_size=${batch_size}"  - "--optimizer=${optimizer}"  - "--test=True" 

The associated Python script (run.py) can then parse these command line arguments using the argparse module.

# run.py  import wandb import argparse  parser = argparse.ArgumentParser() parser.add_argument('--batch_size', type=int) parser.add_argument('--optimizer', type=str, choices=['adam', 'sgd'], required=True) parser.add_argument('--test', type=str2bool, default=False) args = parser.parse_args()  # Initialize a W&B Run with wandb.init('test-project') as run:  run.log({'validation_loss':1}) 

See the Command macros section in Sweep configuration options for a list of pre-defined macros you can use in your sweep configuration.

Boolean arguments

The argparse module does not support boolean arguments by default. To define a boolean argument, you can use the action parameter or use a custom function to convert the string representation of the boolean value to a boolean type.

As an example, you can use the following code snippet to define a boolean argument. Pass store_true or store_false as an argument to ArgumentParser.

import wandb import argparse  parser = argparse.ArgumentParser() parser.add_argument('--test', action='store_true') args = parser.parse_args()  args.test # This will be True if --test is passed, otherwise False 

You can also define a custom function to convert the string representation of the boolean value to a boolean type. For example, the following code snippet defines the str2bool function, which converts a string to a boolean value.

def str2bool(v: str) -> bool:  """Convert a string to a boolean. This is required because  argparse does not support boolean arguments by default.  """  if isinstance(v, bool):  return v  return v.lower() in ('yes', 'true', 't', '1')