Benchmarks#

Database-like ops benchmarks#

We reproduced the Database-like ops benchmark including a solution using cudf.pandas. Here are the results:

duckdb-benchmark-groupby-join

Results of the Database-like ops benchmark including cudf.pandas.

Note: A missing bar in the results for a particular solution indicates we ran into an error when executing one or more queries for that solution.

You can see the per-query results here.

Steps to reproduce#

Below are the steps to reproduce the cudf.pandas results. The steps to reproduce the results for other solutions are documented in duckdblabs/db-benchmark.

  1. Clone the latest duckdblabs/db-benchmark

  2. Build environments for pandas:

virtualenv pandas/py-pandas 
  1. Activate pandas virtualenv:

source pandas/py-pandas/bin/activate 
  1. Install cudf:

pip install --extra-index-url=https://pypi.nvidia.com cudf-cu12 
  1. Modify pandas join/group code to use cudf.pandas and remove the dtype_backend keyword argument (not supported):

diff --git a/pandas/groupby-pandas.py b/pandas/groupby-pandas.py index 58eeb26..2ddb209 100755 --- a/pandas/groupby-pandas.py +++ b/pandas/groupby-pandas.py @@ -1,4 +1,4 @@ -#!/usr/bin/env python3 +#!/usr/bin/env -S python3 -m cudf.pandas  print("# groupby-pandas.py", flush=True) diff --git a/pandas/join-pandas.py b/pandas/join-pandas.py index f39beb0..a9ad651 100755 --- a/pandas/join-pandas.py +++ b/pandas/join-pandas.py @@ -1,4 +1,4 @@ -#!/usr/bin/env python3 +#!/usr/bin/env -S python3 -m cudf.pandas  print("# join-pandas.py", flush=True) @@ -26,7 +26,7 @@ if len(src_jn_y) != 3:  print("loading datasets " + data_name + ", " + y_data_name[0] + ", " + y_data_name[1] + ", " + y_data_name[2], flush=True) -x = pd.read_csv(src_jn_x, engine='pyarrow', dtype_backend='pyarrow') +x = pd.read_csv(src_jn_x, engine='pyarrow')  # x['id1'] = x['id1'].astype('Int32')  # x['id2'] = x['id2'].astype('Int32') @@ -35,17 +35,17 @@ x['id4'] = x['id4'].astype('category') # remove after datatable#1691  x['id5'] = x['id5'].astype('category')  x['id6'] = x['id6'].astype('category') -small = pd.read_csv(src_jn_y[0], engine='pyarrow', dtype_backend='pyarrow') +small = pd.read_csv(src_jn_y[0], engine='pyarrow')  # small['id1'] = small['id1'].astype('Int32')  small['id4'] = small['id4'].astype('category')  # small['v2'] = small['v2'].astype('float64') -medium = pd.read_csv(src_jn_y[1], engine='pyarrow', dtype_backend='pyarrow') +medium = pd.read_csv(src_jn_y[1], engine='pyarrow')  # medium['id1'] = medium['id1'].astype('Int32')  # medium['id2'] = medium['id2'].astype('Int32')  medium['id4'] = medium['id4'].astype('category')  medium['id5'] = medium['id5'].astype('category')  # medium['v2'] = medium['v2'].astype('float64') -big = pd.read_csv(src_jn_y[2], engine='pyarrow', dtype_backend='pyarrow') +big = pd.read_csv(src_jn_y[2], engine='pyarrow')  # big['id1'] = big['id1'].astype('Int32')  # big['id2'] = big['id2'].astype('Int32')  # big['id3'] = big['id3'].astype('Int32') 
  1. Run Modified pandas benchmarks:

./_launcher/solution.R --solution=pandas --task=groupby --nrow=1e7 ./_launcher/solution.R --solution=pandas --task=groupby --nrow=1e8 ./_launcher/solution.R --solution=pandas --task=join --nrow=1e7 ./_launcher/solution.R --solution=pandas --task=join --nrow=1e8