Skip to content

Huggingface

HuggingFaceEmbedding #

Bases: MultiModalEmbedding

HuggingFace class for text and image embeddings.

Parameters:

Name Type Description Default
model_name str

If it is a filepath on disc, it loads the model from that path. If it is not a path, it first tries to download a pre-trained SentenceTransformer model. If that fails, tries to construct a model from the Hugging Face Hub with that name. Defaults to DEFAULT_HUGGINGFACE_EMBEDDING_MODEL.

DEFAULT_HUGGINGFACE_EMBEDDING_MODEL
max_length Optional[int]

Max sequence length to set in Model's config. If None, it will use the Model's default max_seq_length. Defaults to None.

None
query_instruction Optional[str]

Instruction to prepend to query text. Defaults to None.

None
text_instruction Optional[str]

Instruction to prepend to text. Defaults to None.

None
normalize bool

Whether to normalize returned vectors. Defaults to True.

True
embed_batch_size int

The batch size used for the computation. Defaults to DEFAULT_EMBED_BATCH_SIZE.

DEFAULT_EMBED_BATCH_SIZE
cache_folder Optional[str]

Path to store models. Defaults to None.

None
trust_remote_code bool

Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set to True for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. Defaults to False.

False
device Optional[str]

Device (like "cuda", "cpu", "mps", "npu", ...) that should be used for computation. If None, checks if a GPU can be used. Defaults to None.

None
callback_manager Optional[CallbackManager]

Callback Manager. Defaults to None.

None
parallel_process bool

If True it will start a multi-process pool to process the encoding with several independent processes. Great for vast amount of texts. Defaults to False.

False
target_devices Optional[List[str]]

PyTorch target devices, e.g. ["cuda:0", "cuda:1", ...], ["npu:0", "npu:1", ...], or ["cpu", "cpu", "cpu", "cpu"]. If target_devices is None and CUDA/NPU is available, then all available CUDA/NPU devices will be used. If target_devices is None and CUDA/NPU is not available, then 4 CPU devices will be used. This parameter will only be used if parallel_process = True. Defaults to None.

None
num_workers int

The number of workers to use for async embedding calls. Defaults to None.

required
show_progress_bar bool

Whether to show a progress bar. Defaults to False.

False
**model_kwargs

Other model kwargs to use

{}
tokenizer_name Optional[str]

"Deprecated"

'deprecated'
pooling str

"Deprecated"

'deprecated'
model Optional[Any]

"Deprecated"

'deprecated'
tokenizer Optional[Any]

"Deprecated"

'deprecated'

Examples:

pip install llama-index-embeddings-huggingface

from llama_index.core import Settings from llama_index.embeddings.huggingface import HuggingFaceEmbedding # Set up the HuggingFaceEmbedding class with the required model to use with llamaindex core. embed_model = HuggingFaceEmbedding(model_name = "BAAI/bge-small-en") Settings.embed_model = embed_model # Or if you want to Embed some text separately embeddings = embed_model.get_text_embedding("I want to Embed this text!") 
Source code in .build/python/llama-index-integrations/embeddings/llama-index-embeddings-huggingface/llama_index/embeddings/huggingface/base.py
 38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
class HuggingFaceEmbedding(MultiModalEmbedding):  """  HuggingFace class for text and image embeddings.  Args:  model_name (str, optional): If it is a filepath on disc, it loads the model from that path.  If it is not a path, it first tries to download a pre-trained SentenceTransformer model.  If that fails, tries to construct a model from the Hugging Face Hub with that name.  Defaults to DEFAULT_HUGGINGFACE_EMBEDDING_MODEL.  max_length (Optional[int], optional): Max sequence length to set in Model's config. If None,  it will use the Model's default max_seq_length. Defaults to None.  query_instruction (Optional[str], optional): Instruction to prepend to query text.  Defaults to None.  text_instruction (Optional[str], optional): Instruction to prepend to text.  Defaults to None.  normalize (bool, optional): Whether to normalize returned vectors.  Defaults to True.  embed_batch_size (int, optional): The batch size used for the computation.  Defaults to DEFAULT_EMBED_BATCH_SIZE.  cache_folder (Optional[str], optional): Path to store models. Defaults to None.  trust_remote_code (bool, optional): Whether or not to allow for custom models defined on the  Hub in their own modeling files. This option should only be set to True for repositories  you trust and in which you have read the code, as it will execute code present on the Hub  on your local machine. Defaults to False.  device (Optional[str], optional): Device (like "cuda", "cpu", "mps", "npu", ...) that should  be used for computation. If None, checks if a GPU can be used. Defaults to None.  callback_manager (Optional[CallbackManager], optional): Callback Manager. Defaults to None.  parallel_process (bool, optional): If True it will start a multi-process pool to process the  encoding with several independent processes. Great for vast amount of texts.  Defaults to False.  target_devices (Optional[List[str]], optional): PyTorch target devices, e.g.  ["cuda:0", "cuda:1", ...], ["npu:0", "npu:1", ...], or ["cpu", "cpu", "cpu", "cpu"].  If target_devices is None and CUDA/NPU is available, then all available CUDA/NPU devices  will be used. If target_devices is None and CUDA/NPU is not available, then 4 CPU devices  will be used. This parameter will only be used if `parallel_process = True`.  Defaults to None.  num_workers (int, optional): The number of workers to use for async embedding calls.  Defaults to None.  show_progress_bar (bool, optional): Whether to show a progress bar.  Defaults to False.  **model_kwargs: Other model kwargs to use  tokenizer_name (Optional[str], optional): "Deprecated"  pooling (str, optional): "Deprecated"  model (Optional[Any], optional): "Deprecated"  tokenizer (Optional[Any], optional): "Deprecated"  Examples:  `pip install llama-index-embeddings-huggingface`  ```python  from llama_index.core import Settings  from llama_index.embeddings.huggingface import HuggingFaceEmbedding  # Set up the HuggingFaceEmbedding class with the required model to use with llamaindex core.  embed_model = HuggingFaceEmbedding(model_name = "BAAI/bge-small-en")  Settings.embed_model = embed_model  # Or if you want to Embed some text separately  embeddings = embed_model.get_text_embedding("I want to Embed this text!")  ```  """ max_length: int = Field( default=DEFAULT_HUGGINGFACE_LENGTH, description="Maximum length of input.", gt=0 ) normalize: bool = Field(default=True, description="Normalize embeddings or not.") query_instruction: Optional[str] = Field( description="Instruction to prepend to query text.", default=None ) text_instruction: Optional[str] = Field( description="Instruction to prepend to text.", default=None ) cache_folder: Optional[str] = Field( description="Cache folder for Hugging Face files.", default=None ) show_progress_bar: bool = Field( description="Whether to show a progress bar.", default=False ) _model: SentenceTransformer = PrivateAttr() _device: str = PrivateAttr() _parallel_process: bool = PrivateAttr() _target_devices: Optional[List[str]] = PrivateAttr() def __init__( self, model_name: str = DEFAULT_HUGGINGFACE_EMBEDDING_MODEL, tokenizer_name: Optional[str] = "deprecated", pooling: str = "deprecated", max_length: Optional[int] = None, query_instruction: Optional[str] = None, text_instruction: Optional[str] = None, normalize: bool = True, model: Optional[Any] = "deprecated", tokenizer: Optional[Any] = "deprecated", embed_batch_size: int = DEFAULT_EMBED_BATCH_SIZE, cache_folder: Optional[str] = None, trust_remote_code: bool = False, device: Optional[str] = None, callback_manager: Optional[CallbackManager] = None, parallel_process: bool = False, target_devices: Optional[List[str]] = None, show_progress_bar: bool = False, **model_kwargs, ): device = device or infer_torch_device() cache_folder = cache_folder or get_cache_dir() for variable, value in [ ("model", model), ("tokenizer", tokenizer), ("pooling", pooling), ("tokenizer_name", tokenizer_name), ]: if value != "deprecated": raise ValueError( f"{variable} is deprecated. Please remove it from the arguments." ) if model_name is None: raise ValueError("The `model_name` argument must be provided.") model = SentenceTransformer( model_name, device=device, cache_folder=cache_folder, trust_remote_code=trust_remote_code, prompts={ "query": query_instruction or get_query_instruct_for_model_name(model_name), "text": text_instruction or get_text_instruct_for_model_name(model_name), }, **model_kwargs, ) if max_length: model.max_seq_length = max_length else: max_length = model.max_seq_length super().__init__( embed_batch_size=embed_batch_size, callback_manager=callback_manager, model_name=model_name, max_length=max_length, normalize=normalize, query_instruction=query_instruction, text_instruction=text_instruction, show_progress_bar=show_progress_bar, ) self._device = device self._model = model self._parallel_process = parallel_process self._target_devices = target_devices @classmethod def class_name(cls) -> str: return "HuggingFaceEmbedding" @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10), reraise=True, ) def _embed_with_retry( self, inputs: List[Union[str, BytesIO]], prompt_name: Optional[str] = None, ) -> List[List[float]]:  """  Generates embeddings with retry mechanism.  Args:  inputs: List of texts or images to embed  prompt_name: Optional prompt type  Returns:  List of embedding vectors  Raises:  Exception: If embedding fails after retries  """ try: if self._parallel_process: pool = self._model.start_multi_process_pool( target_devices=self._target_devices ) emb = self._model.encode_multi_process( inputs, pool=pool, batch_size=self.embed_batch_size, prompt_name=prompt_name, normalize_embeddings=self.normalize, show_progress_bar=self.show_progress_bar, ) self._model.stop_multi_process_pool(pool=pool) else: emb = self._model.encode( inputs, batch_size=self.embed_batch_size, prompt_name=prompt_name, normalize_embeddings=self.normalize, show_progress_bar=self.show_progress_bar, ) return emb.tolist() except Exception as e: logger.warning(f"Embedding attempt failed: {e!s}") raise def _embed( self, inputs: List[Union[str, BytesIO]], prompt_name: Optional[str] = None, ) -> List[List[float]]:  """  Generates Embeddings with input validation and retry mechanism.  Args:  sentences: Texts or Sentences to embed  prompt_name: The name of the prompt to use for encoding  Returns:  List of embedding vectors  Raises:  ValueError: If any input text is invalid  Exception: If embedding fails after retries  """ return self._embed_with_retry(inputs, prompt_name) def _get_query_embedding(self, query: str) -> List[float]:  """  Generates Embeddings for Query.  Args:  query (str): Query text/sentence  Returns:  List[float]: numpy array of embeddings  """ return self._embed([query], prompt_name="query")[0] async def _aget_query_embedding(self, query: str) -> List[float]:  """  Generates Embeddings for Query Asynchronously.  Args:  query (str): Query text/sentence  Returns:  List[float]: numpy array of embeddings  """ return await asyncio.to_thread(self._get_query_embedding, query) async def _aget_text_embedding(self, text: str) -> List[float]:  """  Generates Embeddings for text Asynchronously.  Args:  text (str): Text/Sentence  Returns:  List[float]: numpy array of embeddings  """ return await asyncio.to_thread(self._get_text_embedding, text) def _get_text_embedding(self, text: str) -> List[float]:  """  Generates Embeddings for text.  Args:  text (str): Text/sentences  Returns:  List[float]: numpy array of embeddings  """ return self._embed([text], prompt_name="text")[0] def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]:  """  Generates Embeddings for text.  Args:  texts (List[str]): Texts / Sentences  Returns:  List[List[float]]: numpy array of embeddings  """ return self._embed(texts, prompt_name="text") async def _aget_text_embeddings(self, texts: List[str]) -> List[List[float]]:  """  Generates Embeddings for text asynchronously.  """ return await asyncio.to_thread(self._get_text_embeddings, texts) def _get_image_embedding(self, img_file_path: ImageType) -> List[float]:  """Generate embedding for an image.""" return self._embed([img_file_path])[0] async def _aget_image_embedding(self, img_file_path: ImageType) -> List[float]:  """Generate embedding for an image asynchronously.""" return self._get_image_embedding(img_file_path) def _get_image_embeddings( self, img_file_paths: List[ImageType] ) -> List[List[float]]:  """Generate embeddings for multiple images.""" return self._embed(img_file_paths) async def _aget_image_embeddings( self, img_file_paths: List[ImageType] ) -> List[List[float]]:  """Generate embeddings for multiple images asynchronously.""" return self._get_image_embeddings(img_file_paths) 

HuggingFaceInferenceAPIEmbedding #

Bases: BaseEmbedding

Wrapper on the Hugging Face's Inference API for embeddings.

Overview of the design: - Uses the feature extraction task: https://huggingface.co/tasks/feature-extraction

Source code in .build/python/llama-index-integrations/embeddings/llama-index-embeddings-huggingface/llama_index/embeddings/huggingface/base.py
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
@deprecated( "Deprecated in favor of `HuggingFaceInferenceAPIEmbedding` from `llama-index-embeddings-huggingface-api` which should be used instead.", action="always", ) class HuggingFaceInferenceAPIEmbedding(BaseEmbedding): # type: ignore[misc]  """  Wrapper on the Hugging Face's Inference API for embeddings.  Overview of the design:  - Uses the feature extraction task: https://huggingface.co/tasks/feature-extraction  """ pooling: Optional[Pooling] = Field( default=Pooling.CLS, description="Pooling strategy. If None, the model's default pooling is used.", ) query_instruction: Optional[str] = Field( default=None, description="Instruction to prepend during query embedding." ) text_instruction: Optional[str] = Field( default=None, description="Instruction to prepend during text embedding." ) # Corresponds with huggingface_hub.InferenceClient model_name: Optional[str] = Field( default=None, description="Hugging Face model name. If None, the task will be used.", ) token: Union[str, bool, None] = Field( default=None, description=( "Hugging Face token. Will default to the locally saved token. Pass " "token=False if you don’t want to send your token to the server." ), ) timeout: Optional[float] = Field( default=None, description=( "The maximum number of seconds to wait for a response from the server." " Loading a new model in Inference API can take up to several minutes." " Defaults to None, meaning it will loop until the server is available." ), ) headers: Dict[str, str] = Field( default=None, description=( "Additional headers to send to the server. By default only the" " authorization and user-agent headers are sent. Values in this dictionary" " will override the default values." ), ) cookies: Dict[str, str] = Field( default=None, description="Additional cookies to send to the server." ) task: Optional[str] = Field( default=None, description=( "Optional task to pick Hugging Face's recommended model, used when" " model_name is left as default of None." ), ) _sync_client: "InferenceClient" = PrivateAttr() _async_client: "AsyncInferenceClient" = PrivateAttr() _get_model_info: "Callable[..., ModelInfo]" = PrivateAttr() def _get_inference_client_kwargs(self) -> Dict[str, Any]:  """Extract the Hugging Face InferenceClient construction parameters.""" return { "model": self.model_name, "token": self.token, "timeout": self.timeout, "headers": self.headers, "cookies": self.cookies, } def __init__(self, **kwargs: Any) -> None:  """  Initialize.  Args:  kwargs: See the class-level Fields.  """ if kwargs.get("model_name") is None: task = kwargs.get("task", "") # NOTE: task being None or empty string leads to ValueError, # which ensures model is present kwargs["model_name"] = InferenceClient.get_recommended_model(task=task) logger.debug( f"Using Hugging Face's recommended model {kwargs['model_name']}" f" given task {task}." ) print(kwargs["model_name"], flush=True) super().__init__(**kwargs) # Populate pydantic Fields self._sync_client = InferenceClient(**self._get_inference_client_kwargs()) self._async_client = AsyncInferenceClient(**self._get_inference_client_kwargs()) self._get_model_info = model_info def validate_supported(self, task: str) -> None:  """  Confirm the contained model_name is deployed on the Inference API service.  Args:  task: Hugging Face task to check within. A list of all tasks can be  found here: https://huggingface.co/tasks  """ all_models = self._sync_client.list_deployed_models(frameworks="all") try: if self.model_name not in all_models[task]: raise ValueError( "The Inference API service doesn't have the model" f" {self.model_name!r} deployed." ) except KeyError as exc: raise KeyError( f"Input task {task!r} not in possible tasks {list(all_models.keys())}." ) from exc def get_model_info(self, **kwargs: Any) -> "ModelInfo":  """Get metadata on the current model from Hugging Face.""" return self._get_model_info(self.model_name, **kwargs) @classmethod def class_name(cls) -> str: return "HuggingFaceInferenceAPIEmbedding" async def _async_embed_single(self, text: str) -> Embedding: embedding = await self._async_client.feature_extraction(text) if len(embedding.shape) == 1: return embedding.tolist() embedding = embedding.squeeze(axis=0) if len(embedding.shape) == 1: # Some models pool internally return embedding.tolist() try: return self.pooling(embedding).tolist() # type: ignore[misc] except TypeError as exc: raise ValueError( f"Pooling is required for {self.model_name} because it returned" " a > 1-D value, please specify pooling as not None." ) from exc async def _async_embed_bulk(self, texts: Sequence[str]) -> List[Embedding]:  """  Embed a sequence of text, in parallel and asynchronously.  NOTE: this uses an externally created asyncio event loop.  """ tasks = [self._async_embed_single(text) for text in texts] return await asyncio.gather(*tasks) def _get_query_embedding(self, query: str) -> Embedding:  """  Embed the input query synchronously.  NOTE: a new asyncio event loop is created internally for this.  """ return asyncio.run(self._aget_query_embedding(query)) def _get_text_embedding(self, text: str) -> Embedding:  """  Embed the text query synchronously.  NOTE: a new asyncio event loop is created internally for this.  """ return asyncio.run(self._aget_text_embedding(text)) def _get_text_embeddings(self, texts: List[str]) -> List[Embedding]:  """  Embed the input sequence of text synchronously and in parallel.  NOTE: a new asyncio event loop is created internally for this.  """ loop = asyncio.new_event_loop() try: tasks = [ loop.create_task(self._aget_text_embedding(text)) for text in texts ] loop.run_until_complete(asyncio.wait(tasks)) finally: loop.close() return [task.result() for task in tasks] async def _aget_query_embedding(self, query: str) -> Embedding: return await self._async_embed_single( text=format_query(query, self.model_name, self.query_instruction) ) async def _aget_text_embedding(self, text: str) -> Embedding: return await self._async_embed_single( text=format_text(text, self.model_name, self.text_instruction) ) async def _aget_text_embeddings(self, texts: List[str]) -> List[Embedding]: return await self._async_embed_bulk( texts=[ format_text(text, self.model_name, self.text_instruction) for text in texts ] ) 

validate_supported #

validate_supported(task: str) -> None 

Confirm the contained model_name is deployed on the Inference API service.

Parameters:

Name Type Description Default
task str

Hugging Face task to check within. A list of all tasks can be found here: https://huggingface.co/tasks

required
Source code in .build/python/llama-index-integrations/embeddings/llama-index-embeddings-huggingface/llama_index/embeddings/huggingface/base.py
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
def validate_supported(self, task: str) -> None:  """  Confirm the contained model_name is deployed on the Inference API service.  Args:  task: Hugging Face task to check within. A list of all tasks can be  found here: https://huggingface.co/tasks  """ all_models = self._sync_client.list_deployed_models(frameworks="all") try: if self.model_name not in all_models[task]: raise ValueError( "The Inference API service doesn't have the model" f" {self.model_name!r} deployed." ) except KeyError as exc: raise KeyError( f"Input task {task!r} not in possible tasks {list(all_models.keys())}." ) from exc 

get_model_info #

get_model_info(**kwargs: Any) -> ModelInfo 

Get metadata on the current model from Hugging Face.

Source code in .build/python/llama-index-integrations/embeddings/llama-index-embeddings-huggingface/llama_index/embeddings/huggingface/base.py
481 482 483
def get_model_info(self, **kwargs: Any) -> "ModelInfo":  """Get metadata on the current model from Hugging Face.""" return self._get_model_info(self.model_name, **kwargs)