Skip to main content
Alibaba Cloud MaxCompute (previously known as ODPS) is a general purpose, fully managed, multi-tenancy data processing platform for large-scale data warehousing. MaxCompute supports various data importing solutions and distributed computing models, enabling users to effectively query massive datasets, reduce production costs, and ensure data security.
The MaxComputeLoader lets you execute a MaxCompute SQL query and loads the results as one document per row.
%pip install -qU pyodps 
Collecting pyodps  Downloading pyodps-0.11.4.post0-cp39-cp39-macosx_10_9_universal2.whl (2.0 MB)  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.0/2.0 MB 1.7 MB/s eta 0:00:0000:0100:010m Requirement already satisfied: charset-normalizer>=2 in /Users/newboy/anaconda3/envs/langchain/lib/python3.9/site-packages (from pyodps) (3.1.0) Requirement already satisfied: urllib3<2.0,>=1.26.0 in /Users/newboy/anaconda3/envs/langchain/lib/python3.9/site-packages (from pyodps) (1.26.15) Requirement already satisfied: idna>=2.5 in /Users/newboy/anaconda3/envs/langchain/lib/python3.9/site-packages (from pyodps) (3.4) Requirement already satisfied: certifi>=2017.4.17 in /Users/newboy/anaconda3/envs/langchain/lib/python3.9/site-packages (from pyodps) (2023.5.7) Installing collected packages: pyodps Successfully installed pyodps-0.11.4.post0 

Basic Usage

To instantiate the loader you’ll need a SQL query to execute, your MaxCompute endpoint and project name, and your access ID and secret access key. The access ID and secret access key can either be passed in direct via the access_id and secret_access_key parameters or they can be set as environment variables MAX_COMPUTE_ACCESS_ID and MAX_COMPUTE_SECRET_ACCESS_KEY.
from langchain_community.document_loaders import MaxComputeLoader 
base_query = """ SELECT * FROM (  SELECT 1 AS id, 'content1' AS content, 'meta_info1' AS meta_info  UNION ALL  SELECT 2 AS id, 'content2' AS content, 'meta_info2' AS meta_info  UNION ALL  SELECT 3 AS id, 'content3' AS content, 'meta_info3' AS meta_info ) mydata; """ 
endpoint = "<ENDPOINT>" project = "<PROJECT>" ACCESS_ID = "<ACCESS ID>" SECRET_ACCESS_KEY = "<SECRET ACCESS KEY>" 
loader = MaxComputeLoader.from_params(  base_query,  endpoint,  project,  access_id=ACCESS_ID,  secret_access_key=SECRET_ACCESS_KEY, ) data = loader.load() 
print(data) 
[Document(page_content='id: 1\ncontent: content1\nmeta_info: meta_info1', metadata={}), Document(page_content='id: 2\ncontent: content2\nmeta_info: meta_info2', metadata={}), Document(page_content='id: 3\ncontent: content3\nmeta_info: meta_info3', metadata={})] 
print(data[0].page_content) 
id: 1 content: content1 meta_info: meta_info1 
print(data[0].metadata) 
{} 

Specifying Which Columns are Content vs Metadata

You can configure which subset of columns should be loaded as the contents of the Document and which as the metadata using the page_content_columns and metadata_columns parameters.
loader = MaxComputeLoader.from_params(  base_query,  endpoint,  project,  page_content_columns=["content"], # Specify Document page content  metadata_columns=["id", "meta_info"], # Specify Document metadata  access_id=ACCESS_ID,  secret_access_key=SECRET_ACCESS_KEY, ) data = loader.load() 
print(data[0].page_content) 
content: content1 
print(data[0].metadata) 
{'id': 1, 'meta_info': 'meta_info1'} 

⌘I