Docprompt - Getting Started
Supercharged Document Analysis
- Common utilities for interacting with PDFs
- PDF loading and serialization
- PDF byte compression using Ghostscript
- Fast rasterization
- Page splitting, re-export with PDFium
- Support for most OCR providers with batched inference
- Google
- Azure Document Intelligence
- Amazon Textract
- Tesseract
Installation
Base installation
With an OCR provider
Usage
Simple Operations
from docprompt import load_document # Load a document document = load_document("path/to/my.pdf") # Rasterize a single page using Ghostscript page_number = 5 rastered = document.rasterize_page(page_number, dpi=120) # Split a pdf based on a page range document_2 = document.split(start=125, stop=130) Performing OCR
from docprompt import load_document, DocumentNode from docprompt.tasks.ocr.gcp import GoogleOcrProvider provider = GoogleOcrProvider.from_service_account_file( project_id=my_project_id, processor_id=my_processor_id, service_account_file=path_to_service_file ) document = load_document("path/to/my.pdf") # A container holds derived data for a document, like OCR or classification results document_node = DocumentNode.from_document(document) provider.process_document_node(document_node) # Caches results on the document_node document_node[0].ocr_result # Access OCR results Document Search
When a large language model returns a result, we might want to highlight that result for our users. However, language models return results as text, while what we need to show our users requires a page number and a bounding box.
After extracting text from a PDF, we can support this pattern using DocumentProvenanceLocator, which lives on a DocumentNode
from docprompt import load_document, DocumentNode from docprompt.tasks.ocr.gcp import GoogleOcrProvider provider = GoogleOcrProvider.from_service_account_file( project_id=my_project_id, processor_id=my_processor_id, service_account_file=path_to_service_file ) document = load_document("path/to/my.pdf") # A container holds derived data for a document, like OCR or classification results document_node = DocumentNode.from_document(document) provider.process_document_node(document_node) # Caches results on the document_node # With OCR results available, we can now instantiate a locator and search through documents. document_node.locator.search("John Doe") # This will return a list of all terms across the document that contain "John Doe" document_node.locator.search("Jane Doe", page_number=4) # Just return results a list of matching results from page 4 This functionality uses a combination of rtree and the Rust library tantivy, allowing you to perform thousands of searches in seconds