Cohere Command R and Command R+ models
You make inference requests to Cohere Command R and Cohere Command R+ models with InvokeModel or InvokeModelWithResponseStream (streaming). You need the model ID for the model that you want to use. To get the model ID, see Supported foundation models in Amazon Bedrock.
Tip
For conversational applications, we recommend that you use the Converse API. The Converse API provides a unified set of parameters that work across all models that support messages. For more information, see Carry out a conversation with the Converse API operations.
Request and Response
Code example
This examples shows how to call the Cohere Command R model.
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Shows how to use the Cohere Command R model. """ import json import logging import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def generate_text(model_id, body): """ Generate text using a Cohere Command R model. Args: model_id (str): The model ID to use. body (str) : The reqest body to use. Returns: dict: The response from the model. """ logger.info("Generating text with Cohere model %s", model_id) bedrock = boto3.client(service_name='bedrock-runtime') response = bedrock.invoke_model( body=body, modelId=model_id ) logger.info( "Successfully generated text with Cohere Command R model %s", model_id) return response def main(): """ Entrypoint for Cohere example. """ logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") model_id = 'cohere.command-r-v1:0' chat_history = [ {"role": "USER", "message": "What is an interesting new role in AI if I don't have an ML background?"}, {"role": "CHATBOT", "message": "You could explore being a prompt engineer!"} ] message = "What are some skills I should have?" try: body = json.dumps({ "message": message, "chat_history": chat_history, "max_tokens": 2000, "temperature": 0.6, "p": 0.5, "k": 250 }) response = generate_text(model_id=model_id, body=body) response_body = json.loads(response.get('body').read()) response_chat_history = response_body.get('chat_history') print('Chat history\n------------') for response_message in response_chat_history: if 'message' in response_message: print(f"Role: {response_message['role']}") print(f"Message: {response_message['message']}\n") print("Generated text\n--------------") print(f"Stop reason: {response_body['finish_reason']}") print(f"Response text: \n{response_body['text']}") except ClientError as err: message = err.response["Error"]["Message"] logger.error("A client error occurred: %s", message) print("A client error occured: " + format(message)) else: print(f"Finished generating text with Cohere model {model_id}.") if __name__ == "__main__": main()