Skip to content
View on GitHubSample viewer app

Show a line of sight between two moving objects.

screenshot

Use case

A line of sight between GeoElements (i.e. observer and target) will not remain constant whilst one or both are on the move.

A GeoElementLineOfSight is therefore useful in cases where visibility between two GeoElements requires monitoring over a period of time in a partially obstructed field of view (such as buildings in a city).

How to use the sample

A line of sight will display between a point on the Empire State Building (observer) and a taxi (target). The taxi will drive around a block and the line of sight should automatically update. The taxi will be highlighted when it is visible. You can change the observer height with the slider to see how it affects the target's visibility.

How it works

  1. Instantiate an AnalysisOverlay and add it to the SceneView's analysis overlays collection.
  2. Instantiate a GeoElementLineOfSight, passing in observer and target GeoElements (features or graphics). Add the line of sight to the analysis overlay's analyses collection.
  3. To get the target visibility when it changes, react to the target visibility changing on the GeoElementLineOfSight instance.

Relevant API

  • AnalysisOverlay
  • GeoElementLineOfSight
  • LineOfSight::targetVisibility

Offline data

Link Local Location
Taxi CAD <userhome>/ArcGIS/Runtime/Data/3D/dolmus\_3ds/dolmus.zip

Tags

3D, line of sight, visibility, visibility analysis

Sample Code

LineOfSightGeoElement.cppLineOfSightGeoElement.cppLineOfSightGeoElement.hLineOfSightGeoElement.qml
Use dark colors for code blocksCopy
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 // [WriteFile Name=LineOfSightGeoElement, Category=Analysis] // [Legal] // Copyright 2019 Esri. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // [Legal]  #ifdef PCH_BUILD #include "pch.hpp" #endif // PCH_BUILD  // sample headers #include "LineOfSightGeoElement.h"  // ArcGIS Maps SDK headers #include "AnalysisListModel.h" #include "AnalysisOverlay.h" #include "AnalysisOverlayListModel.h" #include "AngularUnit.h" #include "ArcGISSceneLayer.h" #include "ArcGISTiledElevationSource.h" #include "AttributeListModel.h" #include "Camera.h" #include "ElevationSourceListModel.h" #include "Error.h" #include "GeoElementLineOfSight.h" #include "GeodeticDistanceResult.h" #include "GeometryEngine.h" #include "Graphic.h" #include "GraphicListModel.h" #include "GraphicsOverlay.h" #include "GraphicsOverlayListModel.h" #include "LayerListModel.h" #include "LayerSceneProperties.h" #include "LinearUnit.h" #include "MapTypes.h" #include "ModelSceneSymbol.h" #include "Point.h" #include "PointBuilder.h" #include "RendererSceneProperties.h" #include "Scene.h" #include "SceneQuickView.h" #include "SceneViewTypes.h" #include "SimpleMarkerSymbol.h" #include "SimpleRenderer.h" #include "SpatialReference.h" #include "Surface.h" #include "SymbolTypes.h"  // Qt headers #include <QFuture> #include <QStandardPaths> #include <QtCore/qglobal.h>  // STL headers #include <array>  using namespace Esri::ArcGISRuntime;  // helper method to get cross platform data path namespace {  QString defaultDataPath()  {  QString dataPath;   #ifdef Q_OS_IOS  dataPath = QStandardPaths::writableLocation(QStandardPaths::DocumentsLocation);  #else  dataPath = QStandardPaths::writableLocation(QStandardPaths::HomeLocation);  #endif   return dataPath;  } } // namespace  namespace {  // Initial fixed point to observe taxi. const Point observationPoint(-73.9853, 40.7484, 200, SpatialReference::wgs84());  // Waypoints around the block for taxi to drive. const std::array<Point, 4> waypoints = {{  { -73.984513, 40.748469, 2, SpatialReference::wgs84() },  { -73.985068, 40.747786, 2, SpatialReference::wgs84() },  { -73.983452, 40.747091, 2, SpatialReference::wgs84() },  { -73.982961, 40.747762, 2, SpatialReference::wgs84() }  }}; }  LineOfSightGeoElement::LineOfSightGeoElement(QObject* parent /* = nullptr */):  QObject(parent),  m_scene(new Scene(BasemapStyle::ArcGISImageryStandard, this)) {  // create a new elevation source from Terrain3D rest service  ArcGISTiledElevationSource* elevationSource = new ArcGISTiledElevationSource(  QUrl("https://elevation3d.arcgis.com/arcgis/rest/services/WorldElevation3D/Terrain3D/ImageServer"), this);   // add the elevation source to the scene to display elevation  m_scene->baseSurface()->elevationSources()->append(elevationSource);   // Load up the buildings that will block the line of sight.  ArcGISSceneLayer* buildings = new ArcGISSceneLayer(  QUrl("https://tiles.arcgis.com/tiles/z2tnIkrLQ2BRzr6P/arcgis/rest/services/New_York_LoD2_3D_Buildings/SceneServer/layers/0"));  m_scene->operationalLayers()->append(buildings);   // Trigger animation of taxi every 100ms.  m_animation.setInterval(100);  m_animation.callOnTimeout(this, &LineOfSightGeoElement::animate); }  LineOfSightGeoElement::~LineOfSightGeoElement() = default;  void LineOfSightGeoElement::init() {  // Register classes for QML  qmlRegisterType<SceneQuickView>("Esri.Samples", 1, 0, "SceneView");  qmlRegisterType<LineOfSightGeoElement>("Esri.Samples", 1, 0, "LineOfSightGeoElementSample"); }  double LineOfSightGeoElement::heightZ() const {  if (m_observer)  {  const Point p = geometry_cast<Point>(m_observer->geometry());  return p.isValid() ? p.z() : 0.0;  }  else  {  return 0.0;  } } void LineOfSightGeoElement::setHeightZ(double z) {  if (!m_observer)  return;   const Point p = geometry_cast<Point>(m_observer->geometry());  if (p.isValid())  {  PointBuilder builder(p);  builder.setZ(z);  m_observer->setGeometry(builder.toGeometry());  emit heightZChanged();  } }  SceneQuickView* LineOfSightGeoElement::sceneView() const {  return m_sceneView; }  // Set the view (created in QML) void LineOfSightGeoElement::setSceneView(SceneQuickView* sceneView) {  if (!sceneView || sceneView == m_sceneView)  {  return;  }   m_sceneView = sceneView;  m_sceneView->setArcGISScene(m_scene);  emit sceneViewChanged();   if (!defaultDataPath().isEmpty() && m_sceneView)  initialize(); }  void LineOfSightGeoElement::initialize() {  // Setup the graphics overlay - ensure that all z-position are relative to the height of the surface.  GraphicsOverlay* graphicsOverlay = new GraphicsOverlay(this);  {  LayerSceneProperties properties = graphicsOverlay->sceneProperties();  properties.setSurfacePlacement(SurfacePlacement::Relative);  graphicsOverlay->setSceneProperties(properties);  }  m_sceneView->graphicsOverlays()->append(graphicsOverlay);   // Set up the renderer so that we can orient the taxi using the `HEADING` attribute.  SimpleRenderer* renderer3D = new SimpleRenderer(this);  {  RendererSceneProperties properties = renderer3D->sceneProperties();  properties.setHeadingExpression("[HEADING]");  renderer3D->setSceneProperties(properties);  }  graphicsOverlay->setRenderer(renderer3D);   // Create our observation point as a red sphere.  m_observer = new Graphic(observationPoint, new SimpleMarkerSymbol(SimpleMarkerSymbolStyle::Circle, Qt::red, 5.f), this);  emit heightZChanged(); // We now have a point to extract the Z-height from.  graphicsOverlay->graphics()->append(m_observer);   // Get our Taxi model. We will attempt to load it and continue our setup after it has loaded.  const QUrl modelPath = defaultDataPath() + "/ArcGIS/Runtime/Data/3D/dolmus_3ds/dolmus.3ds";  ModelSceneSymbol* taxiSymbol = new ModelSceneSymbol(modelPath, 1.0, this);  taxiSymbol->setAnchorPosition(SceneSymbolAnchorPosition::Bottom);   connect(taxiSymbol, &ModelSceneSymbol::doneLoading, this,  [this, graphicsOverlay, taxiSymbol](const Error& error)  {  if (!error.isEmpty())  {  return;  }   // Create taxi from loaded taxi symbol, with an initial "HEADING" attribute for orientation.  m_taxi = new Graphic(waypoints.front(), taxiSymbol, this);  m_taxi->attributes()->insertAttribute("HEADING", 0.0);  graphicsOverlay->graphics()->append(m_taxi);   // Set up our line of sight analysis.  AnalysisOverlay* analysisOverlay = new AnalysisOverlay(this);  m_sceneView->analysisOverlays()->append(analysisOverlay);   GeoElementLineOfSight* lineOfSight = new GeoElementLineOfSight(m_observer, m_taxi, this);  analysisOverlay->analyses()->append(lineOfSight);   connect(lineOfSight, &GeoElementLineOfSight::targetVisibilityChanged, this,  [this](LineOfSightTargetVisibility targetVisibility)  {  // Select taxi whenever there is a clear line of sight from observer position.  m_taxi->setSelected(targetVisibility == LineOfSightTargetVisibility::Visible);  });   Camera camera(observationPoint, 700, -30, 45, 0);  m_sceneView->setViewpointCameraAsync(camera, 0);   m_animation.start();  });   taxiSymbol->load(); }  void LineOfSightGeoElement::animate() {  // Goal point to travel to  Point waypoint = waypoints.at(m_waypointIndex);   // Calculate azimuth between current location and goal location for taxi.  Point location = geometry_cast<Point>(m_taxi->geometry());   if (!location.isValid())  return;   GeodeticDistanceResult distance = GeometryEngine::distanceGeodetic(  location, waypoint, LinearUnit::meters(), AngularUnit::degrees(), GeodeticCurveType::Geodesic);   // Move taxi one metre along the line between its current position and the goal location.  QList<Point> newPoints = GeometryEngine::moveGeodetic(  { location }, 1.0, LinearUnit::meters(), distance.azimuth1(), AngularUnit::degrees(), GeodeticCurveType::Geodesic);  if (newPoints.size() > 0)  {  location = newPoints.last();  }   // Update taxi position and orientation.  m_taxi->setGeometry(geometry_cast<Geometry>(location));  m_taxi->attributes()->replaceAttribute("HEADING", distance.azimuth1());   // When taxi is close enough to the waypoint then increment the index for a new goal next animation step.  // Index is cyclic and an element of [0, 3].  if (distance.distance() <= 2) {  m_waypointIndex = (m_waypointIndex + 1) % waypoints.size();  } }

Your browser is no longer supported. Please upgrade your browser for the best experience. See our browser deprecation post for more details.