Skip to content

Show line of sight between geoelements

View on GitHubSample viewer app

Show a line of sight between two moving objects.

Image of Show Line of Sight Between Geoelements

Use case

A line of sight between geoelements (i.e. observer and target) will not remain constant whilst one or both are on the move.

A line of sight is therefore useful in cases where visibility between two geoelements requires monitoring over a period of time in a partially obstructed field of view (such as buildings in a city).

How to use the sample

A line of sight will display between a point on the Empire State Building (observer) and a taxi (target). The taxi will drive around a block and the line of sight should automatically update. The taxi will be highlighted and blinking when it is visible. A red segment on the line means the view between observer and target is obstructed, whereas cyan means the view is unobstructed. You can change the observer height with the slider to see how it affects the target's visibility.

How it works

  1. Instantiate an AnalysisOverlay and add it to the SceneView's analysis overlays collection.
  2. Instantiate a GeoElementLineOfSight, passing in observer and target GeoElements (features or graphics). Add the line of sight to the analysis overlay's analysis collection.
  3. To get the target visibility when it changes, react to the target visibility changing on the GeoElementLineOfSight instance.

Relevant API

  • AnalysisOverlay
  • GeoElementLineOfSight
  • LineOfSight.TargetVisibility

Additional information

This sample uses the GeoView-Compose Toolkit module to be able to implement a composable SceneView.

Tags

3D, geoview-compose, line of sight, visibility, visibility analysis

Sample Code

SceneViewModel.ktSceneViewModel.ktDownloadActivity.ktMainActivity.ktMainScreen.kt
Use dark colors for code blocksCopy
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 /* Copyright 2024 Esri  *  * Licensed under the Apache License, Version 2.0 (the "License");  * you may not use this file except in compliance with the License.  * You may obtain a copy of the License at  *  * http://www.apache.org/licenses/LICENSE-2.0  *  * Unless required by applicable law or agreed to in writing, software  * distributed under the License is distributed on an "AS IS" BASIS,  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  * See the License for the specific language governing permissions and  * limitations under the License.  *  */  package com.esri.arcgismaps.sample.showlineofsightbetweengeoelements.components  import android.app.Application import androidx.compose.runtime.getValue import androidx.compose.runtime.mutableStateOf import androidx.compose.runtime.setValue import androidx.core.content.ContextCompat.getString import androidx.lifecycle.AndroidViewModel import androidx.lifecycle.viewModelScope import com.arcgismaps.Color import com.arcgismaps.analysis.GeoElementLineOfSight import com.arcgismaps.analysis.LineOfSightTargetVisibility import com.arcgismaps.geometry.AngularUnit import com.arcgismaps.geometry.GeodeticCurveType import com.arcgismaps.geometry.GeometryEngine import com.arcgismaps.geometry.LinearUnit import com.arcgismaps.geometry.Point import com.arcgismaps.geometry.PointBuilder import com.arcgismaps.geometry.SpatialReference import com.arcgismaps.mapping.ArcGISScene import com.arcgismaps.mapping.ArcGISTiledElevationSource import com.arcgismaps.mapping.BasemapStyle import com.arcgismaps.mapping.Surface import com.arcgismaps.mapping.Viewpoint import com.arcgismaps.mapping.layers.ArcGISSceneLayer import com.arcgismaps.mapping.symbology.ModelSceneSymbol import com.arcgismaps.mapping.symbology.SceneSymbolAnchorPosition import com.arcgismaps.mapping.symbology.SimpleMarkerSymbol import com.arcgismaps.mapping.symbology.SimpleMarkerSymbolStyle import com.arcgismaps.mapping.symbology.SimpleRenderer import com.arcgismaps.mapping.view.AnalysisOverlay import com.arcgismaps.mapping.view.Camera import com.arcgismaps.mapping.view.Graphic import com.arcgismaps.mapping.view.GraphicsOverlay import com.arcgismaps.mapping.view.SurfacePlacement import com.esri.arcgismaps.sample.showlineofsightbetweengeoelements.R import kotlinx.coroutines.Dispatchers import kotlinx.coroutines.flow.MutableStateFlow import kotlinx.coroutines.flow.StateFlow import kotlinx.coroutines.flow.asStateFlow import kotlinx.coroutines.launch import java.io.File import kotlin.concurrent.timer  class SceneViewModel(private var application: Application) : AndroidViewModel(application) {   // Keep track of target visibility status string state.  var targetVisibilityString by mutableStateOf("")  private set   // Set visibility status string in the UI.  private fun updateTargetVisibilityString(targetVisibility: String) {  targetVisibilityString = targetVisibility  }   // Initialize z to 50 as starting point and emit its state changes  private val _observerHeight = MutableStateFlow(50.0)  val observerHeight: StateFlow<Double> = _observerHeight.asStateFlow()   // Keeps track of wayPoints  private var waypointsIndex = 0   // Create waypoints around a block for the taxi to drive to  private val wayPoints = listOf(  Point(-73.984513, 40.748469, SpatialReference.wgs84()),  Point(-73.985068, 40.747786, SpatialReference.wgs84()),  Point(-73.983452, 40.747091, SpatialReference.wgs84()),  Point(-73.982961, 40.747762, SpatialReference.wgs84()),  )   private val provisionPath: String by lazy {  application.getExternalFilesDir(null)?.path.toString() + File.separator + application.getString(  R.string.show_line_of_sight_between_geoelements_app_name  ) + File.separator  }   private val filePath = provisionPath + application.getString(R.string.dolmus_model)   // Create a symbol of a taxi using the model file  private val taxiSymbol = ModelSceneSymbol(  uri = filePath,  scale = 3.0F  ).apply {  anchorPosition = SceneSymbolAnchorPosition.Bottom  }   // Create a graphic of a taxi to be the target  private val taxiGraphic = Graphic(  geometry = wayPoints[0],  symbol = taxiSymbol  ).apply {  attributes["HEADING"] = 0.0  }   // Create a graphic near the Empire State Building to be the observer  private val observerGraphic = Graphic(  geometry = Point(  x = -73.9853,  y = 40.7484,  z = 50.0,  spatialReference = SpatialReference.wgs84()  ),  symbol = SimpleMarkerSymbol(  style = SimpleMarkerSymbolStyle.Circle,  color = Color.red,  size = 5f  )  )   // Zoom to show the observer  private val camera = Camera(  lookAtPoint = observerGraphic.geometry as Point,  distance = 700.0,  roll = 0.0,  pitch = 45.0,  heading = -30.0,  )    // Define base surface for elevation data  private val surface = Surface().apply {  elevationSources.add(  ArcGISTiledElevationSource(  uri = getString(  application,  R.string.elevation_service_url  )  )  )  }   // Define a scene layer for the New York buildings  private val buildings =  ArcGISSceneLayer(uri = application.getString(R.string.new_york_buildings_service_url))    // Create a scene and add a basemap to it.  // Set the surface and buildings in the scene, and define the viewpoint on launch  val scene = ArcGISScene(BasemapStyle.ArcGISTopographic).apply {  baseSurface = surface  operationalLayers.add(buildings)  initialViewpoint = Viewpoint(  boundingGeometry = observerGraphic.geometry as Point,  camera = camera  )  }    // Set up a heading expression to handle graphic rotation  private val renderer3D = SimpleRenderer().apply {  sceneProperties.headingExpression = ("[HEADING]")  }    // Create graphic overlay to hold graphics  // Set the surface placement, renderer, and add graphics,  val graphicsOverlay = GraphicsOverlay().apply {  sceneProperties.surfacePlacement = SurfacePlacement.RelativeToScene  renderer = renderer3D  graphics.addAll(listOf(observerGraphic, taxiGraphic))  }    // Create a line of sight between the two graphics and add it to the analysis overlay  private val lineOfSight = GeoElementLineOfSight(  observerGeoElement = observerGraphic,  targetGeoElement = taxiGraphic  ).apply {  // Observe the visibility status of the moving taxi  viewModelScope.launch(Dispatchers.Main) {   // Update target visibility status and select (highlight) the taxi when the line of sight target visibility changes to visible  targetVisibility.collect { targetVisibility ->  when(targetVisibility) {  is LineOfSightTargetVisibility.Visible -> {  updateTargetVisibilityString("Visible")  taxiGraphic.isSelected = true  }  is LineOfSightTargetVisibility.Obstructed -> {  updateTargetVisibilityString("Obstructed")  taxiGraphic.isSelected = false  }  is LineOfSightTargetVisibility.Unknown -> {  updateTargetVisibilityString("Unknown")  taxiGraphic.isSelected = false  }  }  }  }  }   // Create an analysis overlay to hold the line of sight  val analysisOverlay = AnalysisOverlay().apply {  analyses.add(lineOfSight)  }   init {   // Create a timer to animate the tank  timer(  initialDelay = 0,  period = 50,  action = {  animate()  }  )  }   /**  * Updates elevation of the observer graphic using the given [height]  */  fun updateHeight(height: Double) {  val pointBuilder = PointBuilder(observerGraphic.geometry as Point).apply {  z = height  }  observerGraphic.geometry = pointBuilder.toGeometry()  _observerHeight.value = height  }   /**  * Moves the taxi toward the current waypoint a short distance.  */  private fun animate() {   val meters = LinearUnit.meters  val degrees = AngularUnit.degrees  val waypoint = wayPoints[waypointsIndex]  val location = taxiGraphic.geometry as Point   // Calculate the geodetic distance between current taxi location and next waypoint  GeometryEngine.distanceGeodeticOrNull(  point1 = location,  point2 = waypoint,  distanceUnit = meters,  azimuthUnit = degrees,  curveType = GeodeticCurveType.Geodesic  )?.let { geodeticDistanceResult ->   taxiGraphic.apply {   // Move toward waypoint a short distance  geometry = GeometryEngine.tryMoveGeodetic(  pointCollection = listOf(location),  distance = 1.0,  distanceUnit = meters,  azimuth = geodeticDistanceResult.azimuth1,  azimuthUnit = degrees,  curveType = GeodeticCurveType.Geodesic  )[0]   // Rotate to the waypoint  attributes["HEADING"] = geodeticDistanceResult.azimuth1   // Reached waypoint, move to next waypoint  if (geodeticDistanceResult.distance <= 2) {  waypointsIndex = (waypointsIndex + 1) % wayPoints.size  }  }  }  }  }

Your browser is no longer supported. Please upgrade your browser for the best experience. See our browser deprecation post for more details.