Search Knowledge Graphs

Note: Sign in to access the data in this sample. username: viewer01 password: I68VGU^nMurF

Getting Started

A knowledge graph allows you work with a graph network. This network connects people, places, and things (represented by entities) with each other through relationships that define how they are associated. Both entities and relationships can have associated properties. And an entity with a spatial location can be connected with other entities that do not have a spatial location.

This sample demonstrates searching a knowledge graph executeSearchStreaming().

The sample dataset contains observations of bumble bees made at locations around the United States. Each observation was made and verified by users and is of a specific species of bumble bee.

sample-data-model

Good search terms include states abbreviations (e.g. CA, WA), countries, parks, and bumble bee descriptors (e.g. fuzzy, yellow, spotted).

Jump to how it works

For additional information on working with knowledge graph services see:

How to use this sample

1. Sign in

The data in this example is secured, as most knowledge graph data will be since the ArcGIS Knowledge Graph Server license is required. Therefore, the first step is to sign in to load the data.

In this sample sign in with the following credentials: username: viewer01 password: I68VGU^nMurF.

2. Enter search term

Enter a search term. The default search term is "bombus" (Latin name for the genus bumble bee) but you can provide any search term such as "yellow" for yellow-tailed bumble bee or "california" for all observations made in the state.

search-term

3. Specify Parameters

Specify whether to search for the term just in the properties of entities, just in the properties of relationships, or in the properties of both.

search-types

To search with no additional parameters, run the search.

Optional properties

Streaming search has the following optional properties.

  • Start index

    The record index to start the search. All records before this index will be ignored.

  • Maximum number of records

    The maximum number of records to return from the search. By default this is not specified so all results will be returned unless the number of results exceeds the maxRecordCount parameter in the serviceDefinition of the knowledge graph. If the maxRecordCount is reached, then it will return all results up to that limit.

  • Named types to search

    Limit the search to specific entity or relationship types. Any number of types can be specified. All types are searched by default.

  • IDs to search

    Limit the search to specific record ids. Any number of ids can be specified. All ids are searched by default.

  • Return search context

    If checked, the result also returns the names of the properties that matched the search term for each record, and the scores of how well each result matches the search term.

The search may take a few seconds to return results. The records with properties that match the search term are listed, with the first one selected to show it's properties. Select any returned result to see it's properties.

How it Works

The first step is to connect to a knowledge graph using fetchKnowledgeGraph. This returns the service definition and data model for the knowledge graph. You can then use the data model to populate the list of entity types and relationship types that are in the graph.

Use dark colors for code blocksCopy
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232  // set knowledge graph with url to service  const url = "https://sampleserver7.arcgisonline.com/server/rest/services/Hosted/BumbleBees/KnowledgeGraphServer";  const knowledgeGraph = await knowledgeGraphService.fetchKnowledgeGraph(url);  const typeSelect = document.getElementById("streaming-search-named-types");  const searchButton = document.getElementById('streaming-search-button');   //use the knowledge graph data model to create the dropdowns for the named type selection  knowledgeGraph.dataModel.entityTypes.forEach((entityType) => {  typeSelect.innerHTML += `<calcite-combobox-item value="${entityType.name}" heading="${entityType.name}"></calcite-combobox-item>`;  })  knowledgeGraph.dataModel.relationshipTypes.forEach((relType) => {  typeSelect.innerHTML += `<calcite-combobox-item value="${relType.name}" heading="${relType.name}"></calcite-combobox-item>`;  }) 

Streaming search returns results in small chunks allowing the client to begin processing the data returned immediately rather than waiting for the entire result set to be returned before processing. Streaming is faster, more efficient, and will retrieve all matching records, even if the total exceeds the search limits set in the service definition. Another benefit of streaming is that the request is encoded which means that it is far smaller than a traditional HTTP GET or JSON POST body.

Use dark colors for code blocksCopy
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232  //Search the graph using the options provided.  //only the search term and typeCategoryFilter are required as search parameters  searchButton.addEventListener('click', async (e) => {  //get search inputs  const searchString = document.getElementById("streaming-search-keyword").value  const typeFilter = document.getElementById("streaming-search-type-filter").value  const namedTypes = document.getElementById("streaming-search-named-types").value  const index = document.getElementById("streaming-search-start-index").value  const limit = document.getElementById("streaming-search-limit").value  const ids = document.getElementById("streaming-search-ids").value  const context = document.getElementById('streaming-search-context').checked  //construct the search object  const searchParams = {  searchQuery: searchString,  typeCategoryFilter: typeFilter,  returnSearchContext: context,  }  if (index) { searchParams["start"] = index };  if (limit) { searchParams["num"] = limit };  if (namedTypes) { searchParams["namedTypesFilter"] = typeof namedTypes == "string" ? [namedTypes] : namedTypes };  if (ids) { searchParams["idsFilter"] = [ids] };  //execute the search and read the result  const searchResults = await knowledgeGraphService.executeSearchStreaming(knowledgeGraph, searchParams)  readStream(searchResults);  }) 

Each chunk returned by a streaming search is a readable stream that must be read before the results can be used. After the chunk is read it can be used in other client side processing. In this case it is used to create and display of the result.

Use dark colors for code blocksCopy
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232  // a function to read the stream returned from the streaming search  const readStream = async (streamingQueryResult) => {  //create the reader  let reader = streamingQueryResult.resultRowsStream.getReader();  //try to read the stream  try {  while (true) {  //read the stream  const { done, value } = await reader.read();  if (done) {  break;  }  createList(value)  }  // if there is an error in returning the stream or the stream is aborted  } catch (err) {  if (err.name === "AbortError") {  console.log("Request aborted as expected");  } else {  throw err;  }  }  }; 

Your browser is no longer supported. Please upgrade your browser for the best experience. See our browser deprecation post for more details.