Skip to content

Tutorial: Find and extract data

Learn how to find and extract features with the Map Viewer, ArcGIS APIs, and the spatial analysis service.

Vacant housing units within .25 miles (~.4km) of high schools.

Find analyses allow you to find feature data with a SQL or spatial query or to export feature data to create new feature data.

In this tutorial, you use the Find Existing Locations and Derive New Locations operations to determine which neighborhood areas have more vacant housing to live in within a quarter of a mile of high schools in San Francisco. You can perform the combine analyses either in Map Viewer or programmatically using the ArcGIS Python, ArcGIS REST JS, and ArcGIS REST APIs.

The analyses include:

  • Finding high schools within San Francisco (excluding Treasure Island and Yerba Buena Island).
  • Finding neighborhoods within a quarter mile (~.4 km) of a high school.
  • Identifying the census blocks within neighborhoods closest to a high school.
  • Styling the census blocks to identify the blocks with most vacant housing.

After performing the analyses, you will export the results to a KML file.

Prerequisites

Steps

Copy the web map

The tutorial web map contains predefined layers to use as the starting point for the analyses outlined in the steps below.

  1. Go to the Find and extract data tutorial web map and click Sign in.

  2. Verify that you have the following layers by toggling the visibility on and off:

    • Schools
    • Neighborhoods
    • Census blocks with housing data
  3. Click Save > Save As > Save Map to save a copy.

Create a feature layer with high schools

The Schools hosted feature layer contains 445 schools in San Francisco, including independent, private, and public schools. Use the Find Existing Locations operation to return only high schools (grades 9-12) in San Francisco.

Steps to use the Map ViewerSteps to use ArcGIS Python, REST JS, and REST APIs
  1. In the Settings (light) toolbar, click Analysis > Tools > Find by Attributes and Location.

  2. Click + Build new query > Attribute Expression > Next.

  3. Add the following parameters:

    • Find features from: Schools
    • Where: All of the following are true
    • Category
    • equals
    • USD Grades 9-12
  4. Click Add.

  5. Set the Output name to: San Francisco High Schools.

  6. Click Estimate credits. The estimated cost for ArcGIS Location Platform is USD $.04 and ArcGIS Online is .445 credits.

  7. Click Run.

  8. When the analysis completes, Select the San Francisco High Schools layer > Show table to see the features returned.

  1. Implement authentication with the following privileges:

    • Spatial Analysis > Feature Analysis
  2. Define the parameters.

  3. Perform the operation.

    Note: This is a long transaction managed with a job request.

  4. Handle the results.

APIs

ArcGIS API for PythonArcGIS API for PythonArcGIS REST JS
Use dark colors for code blocksCopy
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125  from arcgis.gis import GIS from arcgis.features.analysis import find_existing_locations  portal = GIS(username="<USERNAME>", password="<PASSWORD>")  sf_schools = "https://services3.arcgis.com/GVgbJbqm8hXASVYi/arcgis/rest/services/San_Francisco_Schools/FeatureServer/0"  results = find_existing_locations(  input_layers=[sf_schools],  expressions=[  {"operator": "", "layer": 0, "where": "Category = 'USD Grades 9-12'"}  ],  context={  "extent": {  "xmin": -13647972.49107637,  "ymin": 4536058.802455983,  "xmax": -13611053.406414682,  "ymax": 4559486.751625358,  "spatialReference": {"wkid": 102100, "latestWkid": 3857},  }  },  )  result_features = results.query()  print(  f"There are {len(result_features.features)} high schools.", ) map_widget = portal.map() map_widget.add_layer(result_features) map_widget.zoom_to_layer(result_features) map_widget 

Service requests

Request
HTTPHTTPcURL
Use dark colors for code blocksCopy
1 2 3 4 5 POST arcgis.com/sharing/rest/portals/self HTTP/1.1 Content-Type: application/x-www-form-urlencoded  &f=json &token=<ACCESS_TOKEN>
Response (JSON)
Use dark colors for code blocksCopy
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17  {  "helperServices": {  // Other parameters  "analysis": {  "url": "https://{YOUR_ANALYSIS_SERVICE}/arcgis/rest/services/tasks/GPServer"  }  } }  {  "helperServices":{  // Other parameters  "analysis": {  "url": "https://{YOUR_ANALYSIS_SERVICE}/{WEBADAPTOR_NAME}/rest/services/System/SpatialAnalysisTools/GPServer"},  } }

The results contain high schools in the San Francisco area.

Derive new neighborhood areas near a high school

The Neighborhoods hosted feature layer contains the boundaries for 92 neighborhoods in San Francisco. To find the areas within a neighborhood that are closest to the high schools found in the previous analysis, use the Derive New Locations operation.

Steps to use the Map ViewerSteps to use ArcGIS Python, REST JS, and REST APIs

Construct the spatial query

  1. In the Settings (light) toolbar, click Analysis > Tools > Find by Attributes and Location.
  2. Click + Build new query > Spatial expression > Next to create the following query:
    • **Find features from **: Neighborhoods
    • Where: All of the following are true
    • Click + Spatial expression
    • within a distance of: .25 Miles
    • of San Francisco High Schools
  3. Click Add
  4. Set Include only the parts of features the meet the criteria to true.
  5. Set the Output name to: Neighborhood portions near high schools.
  6. Click Estimate credits. The estimated cost for ArcGIS Location Platform is USD $0.01 and ArcGIS Online is 0.11 credits.
  7. Click Run to create the new layer.

Style neighborhoods

To differentiate between the neighborhoods, style Neighborhood portions near high schools with a unique symbol.

  1. Select the Neighborhood portions near high schools layer and click Style in the Settings (light) toolbar.

  2. Click + Field > and select the nbrhood field then click Add.

  3. Click Style options under Types (Unique symbols) style.

  4. In Style options, click the ellipsis next to the Other style and choose move up.

  5. Click Done twice to close the styles pane.

The neighborhoods should all have unique colors.

  1. Implement authentication with the following privileges:

    • Spatial Analysis > Feature Analysis
  2. Define the parameters.

  3. Perform the operation.

    Note: This is a long transaction managed with a job request.

  4. Handle the results.

APIs

ArcGIS API for PythonArcGIS API for PythonArcGIS REST JS
Expand
Use dark colors for code blocksCopy
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 from arcgis.gis import GIS from arcgis.features.analysis import derive_new_locations  portal = GIS(username="<USERNAME>", password="<PASSWORD>")  highschools = "https://services3.arcgis.com/GVgbJbqm8hXASVYi/arcgis/rest/services/San_Francisco_High_Schools/FeatureServer/0"  neighborhoods = "https://services3.arcgis.com/GVgbJbqm8hXASVYi/arcgis/rest/services/SF_Neighborhoods/FeatureServer/0"  results = derive_new_locations(  input_layers=[neighborhoods, highschools],  expressions=[  {  "operator": "",  "layer": 0,  "selectingLayer": 1,  "spatialRel": "withinDistance",  "distance": 0.25,  "units": "Miles",  }  ], )  result_features = results.query()  print(  f"There are {len(result_features.features)} neighborhood sections.", ) map_widget = portal.map() map_widget.add_layer(result_features) map_widget.zoom_to_layer(result_features) map_widget 

Service requests

Request
HTTPHTTPcURL
Use dark colors for code blocksCopy
1 2 3 4 5 POST arcgis.com/sharing/rest/portals/self HTTP/1.1 Content-Type: application/x-www-form-urlencoded  &f=json &token=<ACCESS_TOKEN>
Response (JSON)
Use dark colors for code blocksCopy
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17  {  "helperServices": {  // Other parameters  "analysis": {  "url": "https://{YOUR_ANALYSIS_SERVICE}/arcgis/rest/services/tasks/GPServer"  }  } }  {  "helperServices":{  // Other parameters  "analysis": {  "url": "https://{YOUR_ANALYSIS_SERVICE}/{WEBADAPTOR_NAME}/rest/services/System/SpatialAnalysisTools/GPServer"},  } }

Style the layer

To learn how to style a feature layer, go to Visualization.

Use dark colors for code blocksCopy
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 {  "renderer": {  "visualVariables": [  {  "type": "sizeInfo",  "target": "outline",  "expression": "view.scale",  "valueExpression": "$view.scale",  "stops": [  { 

The resulting layer contains neighborhoods within a .25 mile buffer of the schools.

Find census blocks completely within neighborhood portions

Census blocks are statistical areas bounded by roads, property lines, and other features. In cities, they can correspond to city blocks. The Census blocks with housing data hosted feature layer contains 7,823 features with attribute information about the total number of vacant housing units per block. Use the Derive New Locations tool to find which census blocks are completely within the .25 mile buffer of neighborhood sections.

Steps to use the Map ViewerSteps to use ArcGIS Python, REST JS, and REST APIs

Construct the spatial query

  1. In the Settings (light) toolbar, click Analysis.

  2. In the panel, click Find Locations > Find by Attributes and Location.

  3. Click + Build new query > Spatial expression > Next.

  4. In the Query builder set the following parameters:

    • Find features from: Census blocks with housing data
    • Where: All of the following are true
    • Click + Spatial expression >
    • Completely within
    • Neighborhood portions near high schools
  5. Click Add

  6. Set Include only the parts of features that meet the criteria to true (checked).

  7. Set the Output name: Census blocks within neighborhood portions.

  8. Click Estimate credits. The estimated cost for ArcGIS Location Platform is USD $0.78 and ArcGIS Online is 7.86 credits.

  9. Click Run to create the new layer.

Style the resulting layer

The Census blocks within neighborhood portions layer contains attributes, such as the total number of rentals, owner-occupied housing, and total units available. Style the feature layer to visualize the amount of housing units available per census block.

  1. Ensure the Census blocks within neighborhood portions layer is selected then click Styles in the Settings (light) toolbar.

  2. Click + Field then select the 2020 Vacant Housing Units field and click Add.

  3. Select Counts and Amounts (color) > Style Options and click the pencil next to Symbol style.

  4. Under Colors choose a yellow to red color ramp.

  5. Click Done > Done to close the style pane.

  6. In the Contents (dark) toolbar, click Save and open > Save to save your web map.

  1. Implement authentication with the following privileges:

    • Spatial Analysis > Feature Analysis
  2. Define the parameters.

  3. Perform the operation.

    Note: This is a long transaction managed with a job request.

  4. Handle the results.

APIs

ArcGIS API for PythonArcGIS API for PythonArcGIS REST JS
Expand
Use dark colors for code blocksCopy
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 from arcgis.gis import GIS from arcgis.features.analysis import find_existing_locations  portal = GIS(username="<USERNAME>", password="<PASSWORD>")  census_blocks = "https://services3.arcgis.com/GVgbJbqm8hXASVYi/arcgis/rest/services/Census_blocks_with_housing_data/FeatureServer/0"  neighborhood_sections = "https://services3.arcgis.com/GVgbJbqm8hXASVYi/arcgis/rest/services/Neighborhood_portions_near_high_schools/FeatureServer/0"  results = find_existing_locations(  input_layers=[census_blocks, neighborhood_sections],  expressions=[  {  "operator": "",  "layer": 0,  "selectingLayer": 1,  "spatialRel": "within"  }  ],  context={  "extent": {  "xmin": -13647972.49107637,  "ymin": 4536058.802455983,  "xmax": -13611053.406414682,  "ymax": 4559486.751625358,  "spatialReference": {"wkid": 102100, "latestWkid": 3857},  }  },  )  result_features = results.query()  print(  f"There are {len(result_features.features)} census blocks.", ) map_widget = portal.map() map_widget.add_layer(result_features) map_widget.zoom_to_layer(result_features) map_widget 

Service requests

Request
HTTPHTTPcURL
Use dark colors for code blocksCopy
1 2 3 4 5 POST arcgis.com/sharing/rest/portals/self HTTP/1.1 Content-Type: application/x-www-form-urlencoded  &f=json &token=<ACCESS_TOKEN>
Response (JSON)
Use dark colors for code blocksCopy
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17  {  "helperServices": {  // Other parameters  "analysis": {  "url": "https://{YOUR_ANALYSIS_SERVICE}/arcgis/rest/services/tasks/GPServer"  }  } }  {  "helperServices":{  // Other parameters  "analysis": {  "url": "https://{YOUR_ANALYSIS_SERVICE}/{WEBADAPTOR_NAME}/rest/services/System/SpatialAnalysisTools/GPServer"},  } }

Style the layer

To learn how to style a feature layer, go to Visualization.

Use dark colors for code blocksCopy
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 {  "renderer": {  "visualVariables": [  {  "type": "colorInfo",  "field": "VACANT_CY",  "valueExpression": null,  "stops": [  {  "value": 0, 

The resulting layer should look something like this

Export as KML

You can use the Extract Data operation to export your own or a shared layer, if the owner of the layer has enabled exporting. You can export a layer into formats such as: CSV, File Geodatabase, Shapefile, and KML. Use the operation to export the Derived census blocks hosted feature layer as a KML file.

Steps to use the Map ViewerSteps to use ArcGIS Python, REST JS, and REST APIs
  1. In the Settings (light) toolbar, click Analysis > Tools > Extract Data.

  2. Set the following:

    • Input layers: Census blocks within neighborhood portions.
    • Extent area: Census blocks within neighborhood portions.
  3. Select KML from the dropdown under Output data format.

  4. Set Output name to: Extract census blocks.

  5. Click Estimate credits. The estimated cost for ArcGIS Location Platform is USD $0.02 and ArcGIS Online is 0.23 credits.

  6. Click Run.

  7. Locate the saved KML file in your folder.

  8. Click the Extract census blocks file.

  9. On the right of the Overview page, click Download.

  1. Implement authentication with the following privileges:

    • Spatial Analysis > Feature Analysis
  2. Define the parameters.

  3. Perform the operation.

    Note: This is a long transaction managed with a job request.

  4. Handle the results.

APIs

ArcGIS API for PythonArcGIS API for PythonArcGIS REST JS
Expand
Use dark colors for code blocksCopy
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 from arcgis import GIS from arcgis.features.analysis import extract_data  portal = GIS(username="<USERNAME>", password="<PASSWORD>")  census_blocks_within_neighborhoods = "https://services3.arcgis.com/GVgbJbqm8hXASVYi/arcgis/rest/services/census_blocks_completely_within_neighborhood_portions/FeatureServer/0"  results = extract_data(  input_layers=[census_blocks_within_neighborhoods],  extent=neighborhoods,  clip=False,  data_format="KML",  output_name={"title": "<ITEM_NAME>"} )  print(f"The new item ID is: {results.itemid}")

Service requests

Request
HTTPHTTPcURL
Use dark colors for code blocksCopy
1 2 3 4 5 POST arcgis.com/sharing/rest/portals/self HTTP/1.1 Content-Type: application/x-www-form-urlencoded  &f=json &token=<ACCESS_TOKEN>
Response (JSON)
Use dark colors for code blocksCopy
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17  {  "helperServices": {  // Other parameters  "analysis": {  "url": "https://{YOUR_ANALYSIS_SERVICE}/arcgis/rest/services/tasks/GPServer"  }  } }  {  "helperServices":{  // Other parameters  "analysis": {  "url": "https://{YOUR_ANALYSIS_SERVICE}/{WEBADAPTOR_NAME}/rest/services/System/SpatialAnalysisTools/GPServer"},  } }

Go to the folder in which you saved the file to verify that it is there.

Exported data

Display the KML file in Google Earth

To support interoperability between different services, you can extract and convert data to different formats. KML files can be used in a Google Earth project. Upload the KML file to Google Earth to see the census blocks from the exported file.

  1. Go to Google Earth.

  2. In the left panel click New > Local KML file.

  3. Click Import and browse to the file you downloaded in the previous step.

You will be zoomed in to San Francisco and see the census blocks that were exported from the Census blocks within neighborhood portions. However, you will not see the layer styles that were applied earlier.

Exported data

What's next?

You performed a series of find analyses to identify the areas of census blocks that have vacant housing units near a high school. Your web map should look something like this.

Learn how to use additional tools, APIs, and location services in these tutorials:

Summarize data

Aggregate and summarize features using summarize analysis operations.


Discover patterns in data

Find patterns and trends in data using spatial analysis operations.


Combine data

Overlay, join, and dissolve features using combine analysis operations.


Your browser is no longer supported. Please upgrade your browser for the best experience. See our browser deprecation post for more details.