AI Inference
Inference can be deployed in many ways, depending on the use-case. Offline processing of data is best done at larger batch sizes, which can deliver optimal GPU utilization and throughput. However, increasing throughput also tends to increase latency. Generative AI and Large Language Models (LLMs) deployments seek to deliver great experiences by lowering latency. So developers and infrastructure managers need to strike a balance between throughput and latency to deliver great user experiences and best possible throughput while containing deployment costs.
When deploying LLMs at scale, a typical way to balance these concerns is to set a time-to-first token limit, and optimize throughput within that limit. The data presented in the Large Language Model Low Latency section show best throughput at a time limit of one second, which enables great throughput at low latency for most users, all while optimizing compute resource use.
Click here to view other performance data.
MLPerf Inference v5.1 Performance Benchmarks
Offline Scenario, Closed Division
Network | Throughput | GPU | Server | GPU Version | Target Accuracy | Dataset |
---|---|---|---|---|---|---|
DeepSeek R1 | 420,659 tokens/sec | 72x GB300 | 72x GB300-288GB_aarch64, TensorRT | NVIDIA GB300 | 99% of FP16 (exact match 81.9132%) | mlperf_deepseek_r1 |
289,712 tokens/sec | 72x GB200 | 72x GB200-186GB_aarch64, TensorRT | NVIDIA GB200 | 99% of FP16 (exact match 81.9132%) | mlperf_deepseek_r1 | |
33,379 tokens/sec | 8x B200 | NVIDIA DGX B200 | NVIDIA B200 | 99% of FP16 (exact match 81.9132%) | mlperf_deepseek_r1 | |
Llama3.1 405B | 16,104 tokens/sec | 72x GB300 | 72x GB300-288GB_aarch64, TensorRT | NVIDIA GB300 | 99% of FP16 ((GovReport + LongDataCollections + 65 Sample from LongBench)rougeL=21.6666, (Remaining samples of the dataset)exact_match=90.1335) | Subset of LongBench, LongDataCollections, Ruler, GovReport |
14,774 tokens/sec | 72x GB200 | 72x GB200-186GB_aarch64, TensorRT | NVIDIA GB200 | 99% of FP16 ((GovReport + LongDataCollections + 65 Sample from LongBench)rougeL=21.6666, (Remaining samples of the dataset)exact_match=90.1335) | Subset of LongBench, LongDataCollections, Ruler, GovReport | |
1,660 tokens/sec | 8x B200 | Dell PowerEdge XE9685L | NVIDIA B200 | 99% of FP16 ((GovReport + LongDataCollections + 65 Sample from LongBench)rougeL=21.6666, (Remaining samples of the dataset)exact_match=90.1335) | Subset of LongBench, LongDataCollections, Ruler, GovReport | |
553 tokens/sec | 8x H200 | Nebius H200 | NVIDIA H200 | 99% of FP16 ((GovReport + LongDataCollections + 65 Sample from LongBench)rougeL=21.6666, (Remaining samples of the dataset)exact_match=90.1335) | Subset of LongBench, LongDataCollections, Ruler, GovReport | |
Llama2 70B | 51,737 tokens/sec | 4x GB200 | 4x GB200-186GB_aarch64, TensorRT | NVIDIA GB200 | 99.9% of FP32 (rouge1=44.4312, rouge2=22.0352, rougeL=28.6162) | OpenOrca (max_seq_len=1024) |
102,909 tokens/sec | 8x B200 | ThinkSystem SR680a V3 | NVIDIA B200 | 99.9% of FP32 (rouge1=44.4312, rouge2=22.0352, rougeL=28.6162) | OpenOrca (max_seq_len=1024) | |
35,317 tokens/sec | 8x H200 | Dell PowerEdge XE9680 | NVIDIA H200 | 99.9% of FP32 (rouge1=44.4312, rouge2=22.0352, rougeL=28.6162) | OpenOrca (max_seq_len=1024) | |
Llama3.1 8B | 146,960 tokens/sec | 8x B200 | ThinkSystem SR780a V3 | NVIDIA B200 | 99% of FP32 and 99.9% of FP32 (rouge1=42.9865, rouge2=20.1235, rougeL=29.9881) | CNN Dailymail (v3.0.0, max_seq_len=2048) |
66,037 tokens/sec | 8x H200 | HPE Cray XD670 | NVIDIA H200 | 99% of FP32 and 99.9% of FP32 (rouge1=42.9865, rouge2=20.1235, rougeL=29.9881) | CNN Dailymail (v3.0.0, max_seq_len=2048) | |
Whisper | 22,273 samples/sec | 4x GB200 | BM.GPU.GB200.4 | NVIDIA GB200 | 99% of FP32 and 99.9% of FP32 (WER=2.0671%) | LibriSpeech |
45,333 samples/sec | 8x B200 | NVIDIA DGX B200 | NVIDIA B200 | 99% of FP32 and 99.9% of FP32 (WER=2.0671%) | LibriSpeech | |
34,451 samples/sec | 8x H200 | HPE Cray XD670 | NVIDIA H200 | 99% of FP32 and 99.9% of FP32 (WER=2.0671%) | LibriSpeech | |
Stable Diffusion XL | 33 samples/sec | 8x B200 | NVIDIA DGX B200 | NVIDIA B200 | FID range: [23.01085758, 23.95007626] and CLIP range: [31.68631873, 31.81331801] | Subset of coco-2014 val |
19 samples/sec | 8x H200 | QuantaGrid D74H-7U | NVIDIA H200 | FID range: [23.01085758, 23.95007626] and CLIP range: [31.68631873, 31.81331801] | Subset of coco-2014 val | |
RGAT | 651,230 samples/sec | 8x B200 | NVIDIA DGX B200 | NVIDIA B200 | 99% of FP32 (72.86%) | IGBH |
RetinaNet | 14,997 samples/sec | 8x H200 | HPE Cray XD670 | NVIDIA H200 | 99% of FP32 (0.3755 mAP) | OpenImages (800x800) |
DLRMv2 | 647,861 samples/sec | 8x H200 | QuantaGrid D74H-7U | NVIDIA H200 | 99% of FP32 and 99.9% of FP32 (AUC=80.31%) | Synthetic Multihot Criteo Dataset |
Server Scenario - Closed Division
Network | Throughput | GPU | Server | GPU Version | Target Accuracy | MLPerf Server Latency Constraints (ms) | Dataset |
---|---|---|---|---|---|---|---|
DeepSeek R1 | 209,328 tokens/sec | 72x GB300 | 72x GB300-288GB_aarch64, TensorRT | NVIDIA GB300 | 99% of FP16 (exact match 81.9132%) | TTFT/TPOT: 2000 ms/80 ms | mlperf_deepseek_r1 |
167,578 tokens/sec | 72x GB200 | 72x GB200-186GB_aarch64, TensorRT | NVIDIA GB200 | 99% of FP16 (exact match 81.9132%) | TTFT/TPOT: 2000 ms/80 ms | mlperf_deepseek_r1 | |
18,592 tokens/sec | 8x B200 | NVIDIA DGX B200 | NVIDIA B200 | 99% of FP16 (exact match 81.9132%) | TTFT/TPOT: 2000 ms/80 ms | mlperf_deepseek_r1 | |
Llama3.1 405B | 12,248 tokens/sec | 72x GB300 | 72x GB300-288GB_aarch64, TensorRT | NVIDIA GB300 | 99% of FP16 ((GovReport + LongDataCollections + 65 Sample from LongBench)rougeL=21.6666, (Remaining samples of the dataset)exact_match=90.1335) | TTFT/TPOT: 6000 ms/175 ms | Subset of LongBench, LongDataCollections, Ruler, GovReport |
11,614 tokens/sec | 72x GB200 | 72x GB200-186GB_aarch64, TensorRT | NVIDIA GB200 | 99% of FP16 ((GovReport + LongDataCollections + 65 Sample from LongBench)rougeL=21.6666, (Remaining samples of the dataset)exact_match=90.1335) | TTFT/TPOT: 6000 ms/175 ms | Subset of LongBench, LongDataCollections, Ruler, GovReport | |
1,280 tokens/sec | 8x B200 | Nebius B200 | NVIDIA B200 | 99% of FP16 ((GovReport + LongDataCollections + 65 Sample from LongBench)rougeL=21.6666, (Remaining samples of the dataset)exact_match=90.1335) | TTFT/TPOT: 6000 ms/175 ms | Subset of LongBench, LongDataCollections, Ruler, GovReport | |
296 tokens/sec | 8x H200 | QuantaGrid D74H-7U | NVIDIA H200 | 99% of FP16 ((GovReport + LongDataCollections + 65 Sample from LongBench)rougeL=21.6666, (Remaining samples of the dataset)exact_match=90.1335) | TTFT/TPOT: 6000 ms/175 ms | Subset of LongBench, LongDataCollections, Ruler, GovReport | |
Llama3.1 405B Interactive | 9,921 tokens/sec | 72x GB200 | 72x GB200-186GB_aarch64, TensorRT | NVIDIA GB200 | 99% of FP16 ((GovReport + LongDataCollections + 65 Sample from LongBench)rougeL=21.6666, (Remaining samples of the dataset)exact_match=90.1335) | TTFT/TPOT: 4500 ms/80 ms | Subset of LongBench, LongDataCollections, Ruler, GovReport |
771 tokens/sec | 8x B200 | Nebius B200 | NVIDIA B200 | 99% of FP16 ((GovReport + LongDataCollections + 65 Sample from LongBench)rougeL=21.6666, (Remaining samples of the dataset)exact_match=90.1335) | TTFT/TPOT: 4500 ms/80 ms | Subset of LongBench, LongDataCollections, Ruler, GovReport | |
203 tokens/sec | 8x H200 | Nebius H200 | NVIDIA H200 | 99% of FP16 ((GovReport + LongDataCollections + 65 Sample from LongBench)rougeL=21.6666, (Remaining samples of the dataset)exact_match=90.1335) | TTFT/TPOT: 4500 ms/80 ms | Subset of LongBench, LongDataCollections, Ruler, GovReport | |
Llama2 70B | 49,360 tokens/sec | 4x GB200 | 4x GB200-186GB_aarch64, TensorRT | NVIDIA GB200 | 99.9% of FP32 (rouge1=44.4312, rouge2=22.0352, rougeL=28.6162) | TTFT/TPOT: 2000 ms/200 ms | OpenOrca (max_seq_len=1024) |
101,611 tokens/sec | 8x B200 | Nebius B200 | NVIDIA B200 | 99.9% of FP32 (rouge1=44.4312, rouge2=22.0352, rougeL=28.6162) | TTFT/TPOT: 2000 ms/200 ms | OpenOrca (max_seq_len=1024) | |
34,194 tokens/sec | 8x H200 | ASUSTeK ESC N8 H200 | NVIDIA H200 | 99.9% of FP32 (rouge1=44.4312, rouge2=22.0352, rougeL=28.6162) | TTFT/TPOT: 2000 ms/200 ms | OpenOrca (max_seq_len=1024) | |
Llama2 70B Interactive | 29,746 tokens/sec | 4x GB200 | 4x GB200-186GB_aarch64, TensorRT | NVIDIA GB200 | 99.9% of FP32 (rouge1=44.4312, rouge2=22.0352, rougeL=28.6162) | TTFT/TPOT: 450 ms/40 ms | OpenOrca (max_seq_len=1024) |
62,851 tokens/sec | 8x B200 | G894-SD1 | NVIDIA B200 | 99.9% of FP32 (rouge1=44.4312, rouge2=22.0352, rougeL=28.6162) | TTFT/TPOT: 450 ms/40 ms | OpenOrca (max_seq_len=1024) | |
23,080 tokens/sec | 8x H200 | Nebius H200 | NVIDIA H200 | 99.9% of FP32 (rouge1=44.4312, rouge2=22.0352, rougeL=28.6162) | TTFT/TPOT: 450 ms/40 ms | OpenOrca (max_seq_len=1024) | |
Llama3.1 8B | 128,794 tokens/sec | 8x B200 | Dell PowerEdge XE9685L | NVIDIA B200 | 99.9% of FP32 (rouge1=44.4312, rouge2=22.0352, rougeL=28.6162) | TTFT/TPOT: 2000 ms/100 ms | OpenOrca (max_seq_len=1024) |
64,915 tokens/sec | 8x H200 | HPE Cray XD670 | NVIDIA H200 | 99.9% of FP32 (rouge1=44.4312, rouge2=22.0352, rougeL=28.6162) | TTFT/TPOT: 2000 ms/100 ms | OpenOrca (max_seq_len=1024) | |
Llama3.1 8B Interactive | 122,269 tokens/sec | 8x B200 | AS-4126GS-NBR-LCC | NVIDIA B200 | 99% of FP32 and 99.9% of FP32 (rouge1=42.9865, rouge2=20.1235, rougeL=29.9881) | TTFT/TPOT: 500 ms/30 ms | CNN Dailymail (v3.0.0, max_seq_len=2048) |
54,118 tokens/sec | 8x H200 | QuantaGrid D74H-7U | NVIDIA H200 | 99% of FP32 and 99.9% of FP32 (rouge1=42.9865, rouge2=20.1235, rougeL=29.9881) | TTFT/TPOT: 500 ms/30 ms | CNN Dailymail (v3.0.0, max_seq_len=2048) | |
Stable Diffusion XL | 29 queries/sec | 8x B200 | Supermicro SYS-422GA-NBRT-LCC | NVIDIA B200 | FID range: [23.01085758, 23.95007626] and CLIP range: [31.68631873, 31.81331801] | 20 s | Subset of coco-2014 val |
18 queries/sec | 8x H200 | QuantaGrid D74H-7U | NVIDIA H200 | FID range: [23.01085758, 23.95007626] and CLIP range: [31.68631873, 31.81331801] | 20 s | Subset of coco-2014 val | |
RetinaNet | 14,406 queries/sec | 8x H200 | ASUSTeK ESC N8 H200 | NVIDIA H200 | 99% of FP32 (0.3755 mAP) | 100 ms | OpenImages (800x800) |
DLRMv2 | 591,162 queries/sec | 8x H200 | ASUSTeK ESC N8 H200 | NVIDIA H200 | 99% of FP32 (AUC=80.31%) | 60 ms | Synthetic Multihot Criteo Dataset |
MLPerf™ v5.1 Inference Closed: DeepSeek R1 99% of FP16, Llama3.1 405B 99% of FP16, Llama2 70B Interactive 99.9% of FP32, Llama2 70B 99.9% of FP32, Stable Diffusion XL, Whisper, RetinaNet, RGAT, DLRM 99% of FP32 accuracy target: 5.1-0007, 5.1-0009, 5.1-0026, 5.1-0028, 5.1-0046, 5.1-0049, 5.1-0060, 5.1-0061, 5.1-0062, 5.1-0069, 5.1-0070, 5.1-0071, 5.1-0072, 5.1-0073, 5.1-0075, 5.1-0077, 5.1-0079, 5.1-0086. MLPerf name and logo are trademarks. See https://mlcommons.org/ for more information.
Llama3.1 8B Max Sequence Length = 2,048
Llama2 70B Max Sequence Length = 1,024
For MLPerf™ various scenario data, click here
For MLPerf™ latency constraints, click here
LLM Inference Performance of NVIDIA Data Center Products
GPT OSS 120B - Max Throughput
Model | Attention | MoE | Input Length | Output Length | Throughput | GPU | Server | Precision | Framework | GPU Version |
---|---|---|---|---|---|---|---|---|---|---|
GPT OSS 120B | TP4 | EP4 | 1,024 | 2,048 | 84,611 output tokens/sec | 4x GB200 | NVIDIA GB200 NVL72 | FP4 | TensorRT-LLM 0.21 | NVIDIA GB200 |
Attention: Tensor Parallelism = 4
MoE: Expert Parallelism = 4
Input tokens not included in TPS calculations
DeepSeek R1 - Max Throughput
Model | Attention | MoE | Input Length | Output Length | Throughput | GPU | Server | Precision | Framework | GPU Version |
---|---|---|---|---|---|---|---|---|---|---|
DeepSeek R1 0528 | TP8 | EP8 | 1,024 | 2,048 | 43,146 output tokens/sec | 8x B200 | DGX B200 | FP4 | TensorRT-LLM 0.20 | NVIDIA B200 |
Accuracy Evaluation:
Precision FP8 (AA Ref): MMLU Pro = 85 | GPQA Diamond = 81 | LiveCodeBench = 77 | SCICODE = 40 | MATH-500 = 98 | AIME 2024 = 89
Precision FP4: MMLU Pro = 84.2 | GPQA Diamond = 80 | LiveCodeBench = 76.3 | SCICODE = 40.1 | MATH-500 = 98.1 | AIME 2024 = 91.3
More details on Accuracy Evalution here
Attention: Tensor Parallelism = 8
MoE: Expert Parallelism = 8
Input tokens not included in TPS calculations
B200 Inference Performance - Max Throughput
Model | PP | TP | Input Length | Output Length | Throughput | GPU | Server | Precision | Framework | GPU Version |
---|---|---|---|---|---|---|---|---|---|---|
Qwen3 235B A22B | 1 | 8 | 128 | 2048 | 66,057 output tokens/sec | 8x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Qwen3 235B A22B | 1 | 8 | 128 | 4096 | 39,496 output tokens/sec | 8x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Qwen3 235B A22B | 1 | 8 | 2048 | 128 | 7,329 output tokens/sec | 8x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Qwen3 235B A22B | 1 | 8 | 5000 | 500 | 8,190 output tokens/sec | 8x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Qwen3 235B A22B | 1 | 8 | 500 | 2000 | 57,117 output tokens/sec | 8x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Qwen3 235B A22B | 1 | 8 | 1000 | 1000 | 42,391 output tokens/sec | 8x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Qwen3 235B A22B | 1 | 8 | 1000 | 2000 | 34,105 output tokens/sec | 8x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Qwen3 235B A22B | 1 | 8 | 2048 | 2048 | 26,854 output tokens/sec | 8x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Qwen3 235B A22B | 1 | 8 | 20000 | 2000 | 4,453 output tokens/sec | 8x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Qwen3 30B A3B | 1 | 1 | 128 | 2048 | 37,844 output tokens/sec | 1x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Qwen3 30B A3B | 1 | 1 | 128 | 4096 | 24,953 output tokens/sec | 1x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Qwen3 30B A3B | 1 | 1 | 2048 | 128 | 6,251 output tokens/sec | 1x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Qwen3 30B A3B | 1 | 1 | 5000 | 500 | 6,142 output tokens/sec | 1x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Qwen3 30B A3B | 1 | 1 | 500 | 2000 | 27,817 output tokens/sec | 1x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Qwen3 30B A3B | 1 | 1 | 1000 | 1000 | 25,828 output tokens/sec | 1x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Qwen3 30B A3B | 1 | 1 | 1000 | 2000 | 22,051 output tokens/sec | 1x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Qwen3 30B A3B | 1 | 1 | 2048 | 2048 | 17,554 output tokens/sec | 1x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Qwen3 30B A3B | 1 | 1 | 20000 | 2000 | 2,944 output tokens/sec | 1x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v4 Maverick | 1 | 8 | 128 | 2048 | 112,676 output tokens/sec | 8x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v4 Maverick | 1 | 8 | 128 | 4096 | 68,170 output tokens/sec | 8x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v4 Maverick | 1 | 8 | 2048 | 128 | 18,088 output tokens/sec | 8x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v4 Maverick | 1 | 8 | 1000 | 1000 | 79,617 output tokens/sec | 8x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v4 Maverick | 1 | 8 | 1000 | 2000 | 63,766 output tokens/sec | 8x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v4 Maverick | 1 | 8 | 2048 | 2048 | 52,195 output tokens/sec | 8x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v4 Maverick | 1 | 8 | 20000 | 2000 | 12,678 output tokens/sec | 8x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v4 Scout | 1 | 1 | 128 | 2048 | 4,481 output tokens/sec | 1x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v4 Scout | 1 | 1 | 128 | 4096 | 8,932 output tokens/sec | 1x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v4 Scout | 1 | 1 | 2048 | 128 | 3,137 output tokens/sec | 1x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v4 Scout | 1 | 1 | 5000 | 500 | 2,937 output tokens/sec | 1x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v4 Scout | 1 | 1 | 500 | 2000 | 11,977 output tokens/sec | 1x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v4 Scout | 1 | 1 | 1000 | 1000 | 10,591 output tokens/sec | 1x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v4 Scout | 1 | 1 | 1000 | 2000 | 9,356 output tokens/sec | 1x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v4 Scout | 1 | 1 | 2048 | 2048 | 7,152 output tokens/sec | 1x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v4 Scout | 1 | 1 | 20000 | 2000 | 1,644 output tokens/sec | 1x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
DeepSeek R1 | 1 | 8 | 128 | 2048 | 62,599 output tokens/sec | 8x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
DeepSeek R1 | 1 | 8 | 128 | 4096 | 44,046 output tokens/sec | 8x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
DeepSeek R1 | 1 | 8 | 1000 | 1000 | 37,634 output tokens/sec | 8x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
DeepSeek R1 | 1 | 8 | 2048 | 2048 | 28,852 output tokens/sec | 8x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v3.3 70B | 1 | 1 | 128 | 2048 | 9,922 output tokens/sec | 1x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v3.3 70B | 1 | 1 | 128 | 4096 | 6,831 output tokens/sec | 1x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v3.3 70B | 1 | 1 | 2048 | 128 | 1,339 output tokens/sec | 1x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v3.3 70B | 1 | 1 | 5000 | 500 | 1,459 output tokens/sec | 1x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v3.3 70B | 1 | 1 | 500 | 2000 | 7,762 output tokens/sec | 1x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v3.3 70B | 1 | 1 | 1000 | 1000 | 7,007 output tokens/sec | 1x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v3.3 70B | 1 | 1 | 1000 | 2000 | 6,737 output tokens/sec | 1x B200 | DGX B200 | FP4 | TensorRT-LLM 0.19.0 | NVIDIA B200 |
Llama v3.3 70B | 1 | 1 | 2048 | 2048 | 4,783 output tokens/sec | 1x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v3.3 70B | 1 | 1 | 20000 | 2000 | 665 output tokens/sec | 1x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v3.1 405B | 1 | 4 | 128 | 2048 | 8,020 output tokens/sec | 4x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v3.1 405B | 1 | 4 | 128 | 4096 | 6,345 output tokens/sec | 4x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v3.1 405B | 1 | 4 | 2048 | 128 | 749 output tokens/sec | 4x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v3.1 405B | 1 | 4 | 5000 | 500 | 1,048 output tokens/sec | 4x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v3.1 405B | 1 | 4 | 500 | 2000 | 6,244 output tokens/sec | 4x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v3.1 405B | 1 | 4 | 1000 | 1000 | 5,209 output tokens/sec | 4x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v3.1 405B | 1 | 4 | 1000 | 2000 | 4,933 output tokens/sec | 4x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v3.1 405B | 1 | 4 | 2048 | 2048 | 4,212 output tokens/sec | 4x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
Llama v3.1 405B | 1 | 4 | 20000 | 2000 | 672 output tokens/sec | 4x B200 | DGX B200 | FP4 | TensorRT-LLM 1.0 | NVIDIA B200 |
TP: Tensor Parallelism
PP: Pipeline Parallelism
For more information on pipeline parallelism, please read Llama v3.1 405B Blog
Output tokens/second on Llama v3.1 405B is inclusive of time to generate the first token (tokens/s = total generated tokens / total latency)
RTX PRO 6000 Blackwell Server Edition Inference Performance - Max Throughput
Model | PP | TP | Input Length | Output Length | Throughput | GPU | Server | Precision | Framework | GPU Version |
---|---|---|---|---|---|---|---|---|---|---|
Llama v4 Scout | 4 | 1 | 128 | 128 | 17,857 output tokens/sec | 4x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v4 Scout | 4 | 1 | 128 | 2048 | 9,491 output tokens/sec | 4x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v4 Scout | 2 | 2 | 128 | 4096 | 6,281 output tokens/sec | 4x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v4 Scout | 4 | 1 | 2048 | 128 | 3,391 output tokens/sec | 4x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v4 Scout | 4 | 1 | 5000 | 500 | 2,496 output tokens/sec | 4x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v4 Scout | 4 | 1 | 500 | 2000 | 9,253 output tokens/sec | 4x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v4 Scout | 4 | 1 | 1000 | 1000 | 8,121 output tokens/sec | 4x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v4 Scout | 4 | 1 | 1000 | 2000 | 6,980 output tokens/sec | 4x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v4 Scout | 4 | 1 | 2048 | 2048 | 4,939 output tokens/sec | 4x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v3.3 70B | 2 | 1 | 128 | 2048 | 4,776 output tokens/sec | 2x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v3.3 70B | 2 | 1 | 128 | 4096 | 2,960 output tokens/sec | 2x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v3.3 70B | 2 | 1 | 500 | 2000 | 4,026 output tokens/sec | 2x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v3.3 70B | 2 | 1 | 1000 | 1000 | 3,658 output tokens/sec | 2x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v3.3 70B | 2 | 1 | 1000 | 2000 | 3,106 output tokens/sec | 2x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v3.3 70B | 2 | 1 | 2048 | 2048 | 2,243 output tokens/sec | 2x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v3.3 70B | 2 | 1 | 20000 | 2000 | 312 output tokens/sec | 2x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v3.1 405B | 8 | 1 | 128 | 128 | 4,866 output tokens/sec | 8x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v3.1 405B | 8 | 1 | 128 | 2048 | 3,132 output tokens/sec | 8x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v3.1 405B | 8 | 1 | 2048 | 128 | 588 output tokens/sec | 8x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v3.1 405B | 8 | 1 | 5000 | 500 | 616 output tokens/sec | 8x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v3.1 405B | 8 | 1 | 500 | 2000 | 2,468 output tokens/sec | 8x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v3.1 405B | 8 | 1 | 1000 | 1000 | 2,460 output tokens/sec | 8x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v3.1 405B | 8 | 1 | 1000 | 2000 | 2,009 output tokens/sec | 8x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v3.1 405B | 8 | 1 | 2048 | 2048 | 1,485 output tokens/sec | 8x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v3.1 8B | 1 | 1 | 128 | 128 | 22,757 output tokens/sec | 1x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v3.1 8B | 1 | 1 | 128 | 4096 | 7,585 output tokens/sec | 1x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v3.1 8B | 1 | 1 | 2048 | 128 | 2,653 output tokens/sec | 1x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v3.1 8B | 1 | 1 | 5000 | 500 | 2,283 output tokens/sec | 1x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v3.1 8B | 1 | 1 | 500 | 2000 | 10,612 output tokens/sec | 1x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v3.1 8B | 1 | 1 | 1000 | 2000 | 8,000 output tokens/sec | 1x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v3.1 8B | 1 | 1 | 2048 | 2048 | 5,423 output tokens/sec | 1x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
Llama v3.1 8B | 1 | 1 | 20000 | 2000 | 756 output tokens/sec | 1x RTX PRO 6000 | Supermicro SYS-521GE-TNRT | FP4 | TensorRT-LLM 0.21.0 | NVIDIA RTX PRO 6000 Blackwell Server Edition |
TP: Tensor Parallelism
PP: Pipeline Parallelism
For more information on pipeline parallelism, please read Llama v3.1 405B Blog
Output tokens/second on Llama v3.1 405B is inclusive of time to generate the first token (tokens/s = total generated tokens / total latency)
H200 Inference Performance - Max Throughput
Model | PP | TP | Input Length | Output Length | Throughput | GPU | Server | Precision | Framework | GPU Version |
---|---|---|---|---|---|---|---|---|---|---|
Qwen3 235B A22B | 1 | 8 | 128 | 2048 | 42,821 output tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Qwen3 235B A22B | 1 | 8 | 128 | 4096 | 26,852 output tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Qwen3 235B A22B | 1 | 8 | 2048 | 128 | 3,331 output tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Qwen3 235B A22B | 1 | 8 | 5000 | 500 | 3,623 output tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Qwen3 235B A22B | 1 | 8 | 500 | 2000 | 28,026 output tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Qwen3 235B A22B | 1 | 8 | 1000 | 1000 | 23,789 output tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Qwen3 235B A22B | 1 | 8 | 1000 | 2000 | 22,061 output tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Qwen3 235B A22B | 1 | 8 | 2048 | 2048 | 16,672 output tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Qwen3 235B A22B | 1 | 8 | 20000 | 2000 | 1,876 output tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v4 Maverick | 1 | 8 | 128 | 2048 | 40,572 output tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v4 Maverick | 1 | 8 | 128 | 4096 | 24,616 output tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v4 Maverick | 1 | 8 | 2048 | 128 | 7,307 output tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v4 Maverick | 1 | 8 | 5000 | 500 | 8,456 output tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v4 Maverick | 1 | 8 | 500 | 2000 | 37,835 output tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v4 Maverick | 1 | 8 | 1000 | 1000 | 31,782 output tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v4 Maverick | 1 | 8 | 1000 | 2000 | 34,734 output tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v4 Maverick | 1 | 8 | 2048 | 2048 | 20,957 output tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v4 Maverick | 1 | 8 | 20000 | 2000 | 4,106 output tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v4 Scout | 1 | 4 | 128 | 2048 | 34,316 output tokens/sec | 4x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v4 Scout | 1 | 4 | 128 | 4096 | 21,332 output tokens/sec | 4x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v4 Scout | 1 | 4 | 2048 | 128 | 3,699 output tokens/sec | 4x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v4 Scout | 1 | 4 | 5000 | 500 | 4,605 output tokens/sec | 4x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v4 Scout | 1 | 4 | 500 | 2000 | 24,630 output tokens/sec | 4x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v4 Scout | 1 | 4 | 1000 | 1000 | 21,636 output tokens/sec | 4x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v4 Scout | 1 | 4 | 1000 | 2000 | 18,499 output tokens/sec | 4x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v4 Scout | 1 | 4 | 2048 | 2048 | 14,949 output tokens/sec | 4x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v4 Scout | 1 | 4 | 20000 | 2000 | 2,105 output tokens/sec | 4x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v3.3 70B | 1 | 1 | 128 | 2048 | 4,336 output tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v3.3 70B | 1 | 1 | 128 | 4096 | 2,872 output tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v3.3 70B | 1 | 1 | 2048 | 128 | 442 output tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v3.3 70B | 1 | 1 | 5000 | 500 | 566 output tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v3.3 70B | 1 | 1 | 500 | 2000 | 3,666 output tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v3.3 70B | 1 | 1 | 1000 | 1000 | 2,909 output tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v3.3 70B | 1 | 1 | 1000 | 2000 | 2,994 output tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v3.3 70B | 1 | 1 | 2048 | 2048 | 2,003 output tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v3.3 70B | 1 | 1 | 20000 | 2000 | 283 output tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v3.1 405B | 1 | 8 | 128 | 2048 | 5,661 output tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 0.19.0 | NVIDIA H200 |
Llama v3.1 405B | 1 | 8 | 128 | 4096 | 5,167 output tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 0.19.0 | NVIDIA H200 |
Llama v3.1 405B | 1 | 8 | 2048 | 128 | 456 output tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v3.1 405B | 1 | 8 | 5000 | 500 | 650 output tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v3.1 405B | 1 | 8 | 500 | 2000 | 4,724 output tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v3.1 405B | 1 | 8 | 1000 | 1000 | 3,330 output tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v3.1 405B | 1 | 8 | 1000 | 2000 | 3,722 output tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v3.1 405B | 1 | 8 | 2048 | 2048 | 2,948 output tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v3.1 405B | 1 | 8 | 20000 | 2000 | 505 output tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v3.1 8B | 1 | 1 | 128 | 2048 | 26,221 output tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v3.1 8B | 1 | 1 | 128 | 4096 | 18,027 output tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v3.1 8B | 1 | 1 | 2048 | 128 | 3,538 output tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v3.1 8B | 1 | 1 | 5000 | 500 | 3,902 output tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v3.1 8B | 1 | 1 | 500 | 2000 | 20,770 output tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v3.1 8B | 1 | 1 | 1000 | 1000 | 17,744 output tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v3.1 8B | 1 | 1 | 1000 | 2000 | 16,828 output tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v3.1 8B | 1 | 1 | 2048 | 2048 | 12,194 output tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
Llama v3.1 8B | 1 | 1 | 20000 | 2000 | 1,804 output tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 1.0 | NVIDIA H200 |
TP: Tensor Parallelism
PP: Pipeline Parallelism
For more information on pipeline parallelism, please read Llama v3.1 405B Blog
Output tokens/second on Llama v3.1 405B is inclusive of time to generate the first token (tokens/s = total generated tokens / total latency)
H100 Inference Performance - Max Throughput
Model | PP | TP | Input Length | Output Length | Throughput | GPU | Server | Precision | Framework | GPU Version |
---|---|---|---|---|---|---|---|---|---|---|
Llama v3.3 70B | 1 | 2 | 128 | 2048 | 6,651 output tokens/sec | 2x H100 | DGX H100 | FP8 | TensorRT-LLM 1.0 | H100-SXM5-80GB |
Llama v3.3 70B | 1 | 2 | 128 | 4096 | 4,199 output tokens/sec | 2x H100 | DGX H100 | FP8 | TensorRT-LLM 1.0 | H100-SXM5-80GB |
Llama v3.3 70B | 1 | 2 | 2048 | 128 | 762 output tokens/sec | 2x H100 | DGX H100 | FP8 | TensorRT-LLM 1.0 | H100-SXM5-80GB |
Llama v3.3 70B | 1 | 2 | 5000 | 500 | 898 output tokens/sec | 2x H100 | DGX H100 | FP8 | TensorRT-LLM 1.0 | H100-SXM5-80GB |
Llama v3.3 70B | 1 | 2 | 500 | 2000 | 5,222 output tokens/sec | 2x H100 | DGX H100 | FP8 | TensorRT-LLM 1.0 | H100-SXM5-80GB |
Llama v3.3 70B | 1 | 2 | 1000 | 1000 | 4,205 output tokens/sec | 2x H100 | DGX H100 | FP8 | TensorRT-LLM 1.0 | H100-SXM5-80GB |
Llama v3.3 70B | 1 | 2 | 1000 | 2000 | 4,146 output tokens/sec | 2x H100 | DGX H100 | FP8 | TensorRT-LLM 1.0 | H100-SXM5-80GB |
Llama v3.3 70B | 1 | 2 | 2048 | 2048 | 3,082 output tokens/sec | 2x H100 | DGX H100 | FP8 | TensorRT-LLM 1.0 | H100-SXM5-80GB |
Llama v3.3 70B | 1 | 2 | 20000 | 2000 | 437 output tokens/sec | 2x H100 | DGX H100 | FP8 | TensorRT-LLM 1.0 | H100-SXM5-80GB |
Llama v3.1 405B | 1 | 8 | 128 | 2048 | 4,340 output tokens/sec | 8x H100 | DGX H100 | FP8 | TensorRT-LLM 1.0 | H100-SXM5-80GB |
Llama v3.1 405B | 1 | 8 | 128 | 4096 | 3,116 output tokens/sec | 8x H100 | DGX H100 | FP8 | TensorRT-LLM 1.0 | H100-SXM5-80GB |
Llama v3.1 405B | 1 | 8 | 2048 | 128 | 453 output tokens/sec | 8x H100 | DGX H100 | FP8 | TensorRT-LLM 1.0 | H100-SXM5-80GB |
Llama v3.1 405B | 1 | 8 | 5000 | 500 | 610 output tokens/sec | 8x H100 | DGX H100 | FP8 | TensorRT-LLM 1.0 | H100-SXM5-80GB |
Llama v3.1 405B | 1 | 8 | 500 | 2000 | 3,994 output tokens/sec | 8x H100 | DGX H100 | FP8 | TensorRT-LLM 1.0 | H100-SXM5-80GB |
Llama v3.1 405B | 1 | 8 | 1000 | 1000 | 2,919 output tokens/sec | 8x H100 | DGX H100 | FP8 | TensorRT-LLM 1.0 | H100-SXM5-80GB |
Llama v3.1 405B | 1 | 8 | 1000 | 2000 | 2,895 output tokens/sec | 8x H100 | DGX H100 | FP8 | TensorRT-LLM 1.0 | H100-SXM5-80GB |
Llama v3.1 405B | 1 | 8 | 2048 | 2048 | 2,296 output tokens/sec | 8x H100 | DGX H100 | FP8 | TensorRT-LLM 1.0 | H100-SXM5-80GB |
Llama v3.1 405B | 1 | 8 | 20000 | 2000 | 345 output tokens/sec | 8x H100 | DGX H100 | FP8 | TensorRT-LLM 1.0 | H100-SXM5-80GB |
Llama v3.1 8B | 1 | 1 | 128 | 2048 | 22,714 output tokens/sec | 1x H100 | DGX H100 | FP8 | TensorRT-LLM 1.0 | H100-SXM5-80GB |
Llama v3.1 8B | 1 | 1 | 128 | 4096 | 14,325 output tokens/sec | 1x H100 | DGX H100 | FP8 | TensorRT-LLM 1.0 | H100-SXM5-80GB |
Llama v3.1 8B | 1 | 1 | 2048 | 128 | 3,450 output tokens/sec | 1x H100 | DGX H100 | FP8 | TensorRT-LLM 1.0 | H100-SXM5-80GB |
Llama v3.1 8B | 1 | 1 | 5000 | 500 | 3,459 output tokens/sec | 1x H100 | DGX H100 | FP8 | TensorRT-LLM 1.0 | H100-SXM5-80GB |
Llama v3.1 8B | 1 | 1 | 500 | 2000 | 17,660 output tokens/sec | 1x H100 | DGX H100 | FP8 | TensorRT-LLM 1.0 | H100-SXM5-80GB |
Llama v3.1 8B | 1 | 1 | 1000 | 1000 | 15,220 output tokens/sec | 1x H100 | DGX H100 | FP8 | TensorRT-LLM 1.0 | H100-SXM5-80GB |
Llama v3.1 8B | 1 | 1 | 1000 | 2000 | 13,899 output tokens/sec | 1x H100 | DGX H100 | FP8 | TensorRT-LLM 1.0 | H100-SXM5-80GB |
Llama v3.1 8B | 1 | 1 | 2048 | 2048 | 9,305 output tokens/sec | 1x H100 | DGX H100 | FP8 | TensorRT-LLM 1.0 | H100-SXM5-80GB |
Llama v3.1 8B | 1 | 1 | 20000 | 2000 | 1,351 output tokens/sec | 1x H100 | DGX H100 | FP8 | TensorRT-LLM 1.0 | H100-SXM5-80GB |
TP: Tensor Parallelism
PP: Pipeline Parallelism
L40S Inference Performance - Max Throughput
Model | PP | TP | Input Length | Output Length | Throughput | GPU | Server | Precision | Framework | GPU Version |
---|---|---|---|---|---|---|---|---|---|---|
Llama v4 Scout | 2 | 2 | 128 | 2048 | 1,105 output tokens/sec | 4x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.21.0 | NVIDIA L40S |
Llama v4 Scout | 2 | 2 | 128 | 4096 | 707 output tokens/sec | 4x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.21.0 | NVIDIA L40S |
Llama v4 Scout | 4 | 1 | 2048 | 128 | 561 output tokens/sec | 4x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.21.0 | NVIDIA L40S |
Llama v4 Scout | 4 | 1 | 5000 | 500 | 307 output tokens/sec | 4x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.21.0 | NVIDIA L40S |
Llama v4 Scout | 2 | 2 | 500 | 2000 | 1,093 output tokens/sec | 4x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.21.0 | NVIDIA L40S |
Llama v4 Scout | 2 | 2 | 1000 | 1000 | 920 output tokens/sec | 4x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.21.0 | NVIDIA L40S |
Llama v4 Scout | 2 | 2 | 1000 | 2000 | 884 output tokens/sec | 4x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.21.0 | NVIDIA L40S |
Llama v4 Scout | 2 | 2 | 2048 | 2048 | 615 output tokens/sec | 4x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.21.0 | NVIDIA L40S |
Llama v3.3 70B | 4 | 1 | 128 | 2048 | 1,694 output tokens/sec | 4x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.21.0 | NVIDIA L40S |
Llama v3.3 70B | 2 | 2 | 128 | 4096 | 972 output tokens/sec | 4x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.21.0 | NVIDIA L40S |
Llama v3.3 70B | 4 | 1 | 500 | 2000 | 1,413 output tokens/sec | 4x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.21.0 | NVIDIA L40S |
Llama v3.3 70B | 4 | 1 | 1000 | 1000 | 1,498 output tokens/sec | 4x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.21.0 | NVIDIA L40S |
Llama v3.3 70B | 4 | 1 | 1000 | 2000 | 1,084 output tokens/sec | 4x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.21.0 | NVIDIA L40S |
Llama v3.3 70B | 4 | 1 | 2048 | 2048 | 773 output tokens/sec | 4x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.21.0 | NVIDIA L40S |
Llama v3.1 8B | 1 | 1 | 128 | 128 | 8,471 output tokens/sec | 1x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.21.0 | NVIDIA L40S |
Llama v3.1 8B | 1 | 1 | 128 | 4096 | 2,888 output tokens/sec | 1x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.21.0 | NVIDIA L40S |
Llama v3.1 8B | 1 | 1 | 2048 | 128 | 1,017 output tokens/sec | 1x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.21.0 | NVIDIA L40S |
Llama v3.1 8B | 1 | 1 | 5000 | 500 | 863 output tokens/sec | 1x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.21.0 | NVIDIA L40S |
Llama v3.1 8B | 1 | 1 | 500 | 2000 | 4,032 output tokens/sec | 1x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.21.0 | NVIDIA L40S |
Llama v3.1 8B | 1 | 1 | 1000 | 2000 | 3,134 output tokens/sec | 1x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.21.0 | NVIDIA L40S |
Llama v3.1 8B | 1 | 1 | 2048 | 2048 | 2,148 output tokens/sec | 1x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.21.0 | NVIDIA L40S |
Llama v3.1 8B | 1 | 1 | 20000 | 2000 | 280 output tokens/sec | 1x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.21.0 | NVIDIA L40S |
TP: Tensor Parallelism
PP: Pipeline Parallelism
Inference Performance of NVIDIA Data Center Products
B200 Inference Performance
Network | Batch Size | Throughput | Efficiency | Latency (ms) | GPU | Server | Container | Precision | Dataset | Framework | GPU Version |
---|---|---|---|---|---|---|---|---|---|---|---|
ResNet-50v1.5 | 8 | 18,517 images/sec | 39 images/sec/watt | 0.43 | 1x B200 | DGX B200 | 25.04-py3 | Mixed | Synthetic | TensorRT 10.9 | NVIDIA B200 |
128 | 57,280 images/sec | 58 images/sec/watt | 2.23 | 1x B200 | DGX B200 | 25.04-py3 | Mixed | Synthetic | TensorRT 10.9 | NVIDIA B200 | |
EfficientNet-B0 | 8 | 10,861 images/sec | 30 images/sec/watt | 0.74 | 1x B200 | DGX B200 | 25.04-py3 | Mixed | Synthetic | TensorRT 10.9 | NVIDIA B200 |
128 | 28,889 images/sec | 41 images/sec/watt | 4.43 | 1x B200 | DGX B200 | 25.04-py3 | Mixed | Synthetic | TensorRT 10.9 | NVIDIA B200 | |
EfficientNet-B4 | 8 | 2,634 images/sec | 5 images/sec/watt | 3.04 | 1x B200 | DGX B200 | 25.04-py3 | Mixed | Synthetic | TensorRT 10.9 | NVIDIA B200 |
128 | 4,101 images/sec | 5 images/sec/watt | 31.21 | 1x B200 | DGX B200 | 25.04-py3 | Mixed | Synthetic | TensorRT 10.9 | NVIDIA B200 | |
HF Swin Base | 8 | 6,062 samples/sec | 14 samples/sec/watt | 1.32 | 1x B200 | DGX B200 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA B200 |
32 | 11,319 samples/sec | 19 samples/sec/watt | 2.83 | 1x B200 | DGX B200 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA B200 | |
HF Swin Large | 8 | 4,742 samples/sec | 10 samples/sec/watt | 1.69 | 1x B200 | DGX B200 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA B200 |
32 | 7,479 samples/sec | 11 samples/sec/watt | 4.28 | 1x B200 | DGX B200 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA B200 | |
HF ViT Base | 8 | 11,267 samples/sec | 22 samples/sec/watt | 0.71 | 1x B200 | DGX B200 | 25.04-py3 | FP8 | Synthetic | TensorRT 10.9 | NVIDIA B200 |
64 | 21,688 samples/sec | 29 samples/sec/watt | 2.95 | 1x B200 | DGX B200 | 25.04-py3 | FP8 | Synthetic | TensorRT 10.9 | NVIDIA B200 | |
HF ViT Large | 8 | 5,171 samples/sec | 8 samples/sec/watt | 1.55 | 1x B200 | DGX B200 | 25.04-py3 | FP8 | Synthetic | TensorRT 10.9 | NVIDIA B200 |
64 | 8,485 samples/sec | 10 samples/sec/watt | 7.54 | 1x B200 | DGX B200 | 25.04-py3 | FP8 | Synthetic | TensorRT 10.9 | NVIDIA B200 | |
QuartzNet | 8 | 7,787 samples/sec | 24 samples/sec/watt | 1.03 | 1x B200 | DGX B200 | 25.04-py3 | Mixed | Synthetic | TensorRT 10.9 | NVIDIA B200 |
128 | 25,034 samples/sec | 47 samples/sec/watt | 5.11 | 1x B200 | DGX B200 | 25.04-py3 | Mixed | Synthetic | TensorRT 10.9 | NVIDIA B200 | |
RetinaNet-RN34 | 8 | 3,318 images/sec | 8 images/sec/watt | 2.41 | 1x B200 | DGX B200 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA B200 |
HF Swin Base: Input Image Size = 224x224 | Window Size = 224x 224. HF Swin Large: Input Image Size = 224x224 | Window Size = 384x384
HF ViT Base: Input Image Size = 224x224 | Patch Size = 224x224. HF ViT Large: Input Image Size = 224x224 | Patch Size = 384x384
QuartzNet: Sequence Length = 256
H200 Inference Performance
Network | Batch Size | Throughput | Efficiency | Latency (ms) | GPU | Server | Container | Precision | Dataset | Framework | GPU Version |
---|---|---|---|---|---|---|---|---|---|---|---|
ResNet-50v1.5 | 8 | 21,253 images/sec | 67 images/sec/watt | 0.38 | 1x H200 | DGX H200 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA H200 |
128 | 65,328 images/sec | 107 images/sec/watt | 1.96 | 1x H200 | DGX H200 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA H200 | |
EfficientNet-B0 | 8 | 17,243 images/sec | 77 images/sec/watt | 0.46 | 1x H200 | DGX H200 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA H200 |
128 | 57,387 images/sec | 122 images/sec/watt | 2.23 | 1x H200 | DGX H200 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA H200 | |
EfficientNet-B4 | 8 | 4,613 images/sec | 14 images/sec/watt | 1.73 | 1x H200 | DGX H200 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA H200 |
128 | 9,018 images/sec | 15 images/sec/watt | 14.19 | 1x H200 | DGX H200 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA H200 | |
HF Swin Base | 8 | 5,040 samples/sec | 11 samples/sec/watt | 1.59 | 1x H200 | DGX H200 | 25.04-py3 | Mixed | Synthetic | TensorRT 10.9 | NVIDIA H200 |
32 | 8,175 samples/sec | 12 samples/sec/watt | 3.91 | 1x H200 | DGX H200 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA H200 | |
HF Swin Large | 8 | 3,387 samples/sec | 6 samples/sec/watt | 2.36 | 1x H200 | DGX H200 | 25.04-py3 | Mixed | Synthetic | TensorRT 10.9 | NVIDIA H200 |
32 | 4,720 samples/sec | 7 samples/sec/watt | 6.78 | 1x H200 | DGX H200 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA H200 | |
HF ViT Base | 8 | 8,847 samples/sec | 19 samples/sec/watt | 0.9 | 1x H200 | DGX H200 | 25.04-py3 | FP8 | Synthetic | TensorRT 10.9 | NVIDIA H200 |
64 | 15,611 samples/sec | 23 samples/sec/watt | 4.1 | 1x H200 | DGX H200 | 25.04-py3 | FP8 | Synthetic | TensorRT 10.9 | NVIDIA H200 | |
HF ViT Large | 8 | 3,667 samples/sec | 6 samples/sec/watt | 2.18 | 1x H200 | DGX H200 | 25.04-py3 | FP8 | Synthetic | TensorRT 10.9 | NVIDIA H200 |
64 | 5,459 samples/sec | 8 samples/sec/watt | 11.72 | 1x H200 | DGX H200 | 25.04-py3 | FP8 | Synthetic | TensorRT 10.9 | NVIDIA H200 | |
QuartzNet | 8 | 7,012 samples/sec | 25 samples/sec/watt | 1.14 | 1x H200 | DGX H200 | 25.04-py3 | Mixed | Synthetic | TensorRT 10.9 | NVIDIA H200 |
128 | 34,359 samples/sec | 90 samples/sec/watt | 3.73 | 1x H200 | DGX H200 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA H200 | |
RetinaNet-RN34 | 8 | 3,025 images/sec | 9 images/sec/watt | 2.64 | 1x H200 | DGX H200 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA H200 |
HF Swin Base: Input Image Size = 224x224 | Window Size = 224x 224. HF Swin Large: Input Image Size = 224x224 | Window Size = 384x384
HF ViT Base: Input Image Size = 224x224 | Patch Size = 224x224. HF ViT Large: Input Image Size = 224x224 | Patch Size = 384x384
QuartzNet: Sequence Length = 256
GH200 Inference Performance
Network | Batch Size | Throughput | Efficiency | Latency (ms) | GPU | Server | Container | Precision | Dataset | Framework | GPU Version |
---|---|---|---|---|---|---|---|---|---|---|---|
ResNet-50v1.5 | 8 | 21,420 images/sec | 61 images/sec/watt | 0.37 | 1x GH200 | NVIDIA P3880 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA GH200 |
128 | 66,276 images/sec | 105 images/sec/watt | 1.93 | 1x GH200 | NVIDIA P3880 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA GH200 | |
EfficientNet-B0 | 8 | 17,198 images/sec | 68 images/sec/watt | 0.47 | 1x GH200 | NVIDIA P3880 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA GH200 |
128 | 57,736 images/sec | 116 images/sec/watt | 2.22 | 1x GH200 | NVIDIA P3880 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA GH200 | |
EfficientNet-B4 | 8 | 4,622 images/sec | 13 images/sec/watt | 1.73 | 1x GH200 | NVIDIA P3880 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA GH200 |
128 | 9,015 images/sec | 15 images/sec/watt | 14.2 | 1x GH200 | NVIDIA P3880 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA GH200 | |
HF Swin Base | 8 | 5,023 samples/sec | 11 samples/sec/watt | 1.59 | 1x GH200 | NVIDIA P3880 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA GH200 |
32 | 8,046 samples/sec | 12 samples/sec/watt | 3.98 | 1x GH200 | NVIDIA P3880 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA GH200 | |
HF Swin Large | 8 | 3,351 samples/sec | 6 samples/sec/watt | 2.39 | 1x GH200 | NVIDIA P3880 | 25.04-py3 | Mixed | Synthetic | TensorRT 10.9 | NVIDIA GH200 |
32 | 4,502 samples/sec | 7 samples/sec/watt | 7.11 | 1x GH200 | NVIDIA P3880 | 25.04-py3 | Mixed | Synthetic | TensorRT 10.9 | NVIDIA GH200 | |
HF ViT Base | 8 | 8,746 samples/sec | 18 samples/sec/watt | 0.91 | 1x GH200 | NVIDIA P3880 | 25.04-py3 | FP8 | Synthetic | TensorRT 10.9 | NVIDIA GH200 |
64 | 15,167 samples/sec | 23 samples/sec/watt | 4.22 | 1x GH200 | NVIDIA P3880 | 25.04-py3 | FP8 | Synthetic | TensorRT 10.9 | NVIDIA GH200 | |
HF ViT Large | 8 | 3,360 samples/sec | 6 samples/sec/watt | 2.38 | 1x GH200 | NVIDIA P3880 | 25.04-py3 | FP8 | Synthetic | TensorRT 10.9 | NVIDIA GH200 |
64 | 5,165 samples/sec | 8 samples/sec/watt | 12.39 | 1x GH200 | NVIDIA P3880 | 25.04-py3 | FP8 | Synthetic | TensorRT 10.9 | NVIDIA GH200 | |
QuartzNet | 8 | 7,038 samples/sec | 24 samples/sec/watt | 1.14 | 1x GH200 | NVIDIA P3880 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA GH200 |
128 | 34,280 samples/sec | 82 samples/sec/watt | 3.73 | 1x GH200 | NVIDIA P3880 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA GH200 | |
RetinaNet-RN34 | 8 | 2,955 images/sec | 5 images/sec/watt | 2.71 | 1x GH200 | NVIDIA P3880 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA GH200 |
HF Swin Base: Input Image Size = 224x224 | Window Size = 224x 224. HF Swin Large: Input Image Size = 224x224 | Window Size = 384x384
HF ViT Base: Input Image Size = 224x224 | Patch Size = 224x224. HF ViT Large: Input Image Size = 224x224 | Patch Size = 384x384
QuartzNet: Sequence Length = 256
H100 Inference Performance
Network | Batch Size | Throughput | Efficiency | Latency (ms) | GPU | Server | Container | Precision | Dataset | Framework | GPU Version |
---|---|---|---|---|---|---|---|---|---|---|---|
ResNet-50v1.5 | 8 | 21,912 images/sec | 65 images/sec/watt | 0.37 | 1x H100 | DGX H100 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | H100 SXM5-80GB |
128 | 56,829 images/sec | 119 images/sec/watt | 2.25 | 1x H100 | DGX H100 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | H100 SXM5-80GB | |
EfficientNet-B0 | 8 | 17,208 images/sec | 63 images/sec/watt | 0.46 | 1x H100 | DGX H100 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | H100 SXM5-80GB |
128 | 52,455 images/sec | 191 images/sec/watt | 2.44 | 1x H100 | DGX H100 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | H100 SXM5-80GB | |
EfficientNet-B4 | 8 | 4,419 images/sec | 13 images/sec/watt | 1.81 | 1x H100 | DGX H100 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | H100 SXM5-80GB |
128 | 8,701 images/sec | 14 images/sec/watt | 14.71 | 1x H100 | DGX H100 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | H100 SXM5-80GB | |
HF Swin Base | 8 | 5,124 samples/sec | 9 samples/sec/watt | 1.56 | 1x H100 | DGX H100 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | H100 SXM5-80GB |
32 | 7,348 samples/sec | 11 samples/sec/watt | 4.35 | 1x H100 | DGX H100 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | H100 SXM5-80GB | |
HF Swin Large | 8 | 3,147 samples/sec | 6 samples/sec/watt | 2.54 | 1x H100 | DGX H100 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | H100 SXM5-80GB |
32 | 4,392 samples/sec | 6 samples/sec/watt | 7.29 | 1x H100 | DGX H100 | 25.04-py3 | Mixed | Synthetic | TensorRT 10.9 | H100 SXM5-80GB | |
HF ViT Base | 8 | 8,494 samples/sec | 17 samples/sec/watt | 0.94 | 1x H100 | DGX H100 | 25.04-py3 | FP8 | Synthetic | TensorRT 10.9 | H100 SXM5-80GB |
64 | 14,968 samples/sec | 22 samples/sec/watt | 4.28 | 1x H100 | DGX H100 | 25.04-py3 | FP8 | Synthetic | TensorRT 10.9 | H100 SXM5-80GB | |
HF ViT Large | 8 | 3,399 samples/sec | 5 samples/sec/watt | 2.35 | 1x H100 | DGX H100 | 25.04-py3 | FP8 | Synthetic | TensorRT 10.9 | H100 SXM5-80GB |
64 | 5,195 samples/sec | 8 samples/sec/watt | 12.32 | 1x H100 | DGX H100 | 25.04-py3 | FP8 | Synthetic | TensorRT 10.9 | H100 SXM5-80GB | |
QuartzNet | 8 | 7,002 samples/sec | 23 samples/sec/watt | 1.14 | 1x H100 | DGX H100 | 25.04-py3 | Mixed | Synthetic | TensorRT 10.9 | H100 SXM5-80GB |
128 | 34,881 samples/sec | 95 samples/sec/watt | 3.67 | 1x H100 | DGX H100 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | H100 SXM5-80GB | |
RetinaNet-RN34 | 8 | 2,764 images/sec | 15 images/sec/watt | 2.89 | 1x H100 | DGX H100 | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | H100 SXM5-80GB |
HF Swin Base: Input Image Size = 224x224 | Window Size = 224x 224. HF Swin Large: Input Image Size = 224x224 | Window Size = 384x384
HF ViT Base: Input Image Size = 224x224 | Patch Size = 224x224. HF ViT Large: Input Image Size = 224x224 | Patch Size = 384x384
QuartzNet: Sequence Length = 256
L40S Inference Performance
Network | Batch Size | Throughput | Efficiency | Latency (ms) | GPU | Server | Container | Precision | Dataset | Framework | GPU Version |
---|---|---|---|---|---|---|---|---|---|---|---|
ResNet-50v1.5 | 8 | 23,025 images/sec | 71 images/sec/watt | 0.35 | 1x L40S | Supermicro SYS-521GE-TNRT | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA L40S |
32 | 29,073 images/sec | 84 images/sec/watt | 4.4 | 1x L40S | Supermicro SYS-521GE-TNRT | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA L40S | |
EfficientDet-D0 | 8 | 4,640 images/sec | 16 images/sec/watt | 1.72 | 1x L40S | Supermicro SYS-521GE-TNRT | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA L40S |
EfficientNet-B0 | 8 | 20,504 images/sec | 96 images/sec/watt | 0.39 | 1x L40S | Supermicro SYS-521GE-TNRT | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA L40S |
32 | 42,553 images/sec | 127 images/sec/watt | 3.01 | 1x L40S | Supermicro SYS-521GE-TNRT | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA L40S | |
EfficientNet-B4 | 8 | 5,135 images/sec | 17 images/sec/watt | 1.56 | 1x L40S | Supermicro SYS-521GE-TNRT | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA L40S |
16 | 4,066 images/sec | 12 images/sec/watt | 31.48 | 1x L40S | Supermicro SYS-521GE-TNRT | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA L40S | |
HF Swin Base | 8 | 3,812 samples/sec | 11 samples/sec/watt | 2.1 | 1x L40S | Supermicro SYS-521GE-TNRT | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA L40S |
16 | 4,236 samples/sec | 12 samples/sec/watt | 7.55 | 1x L40S | Supermicro SYS-521GE-TNRT | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA L40S | |
HF Swin Large | 8 | 1,939 samples/sec | 6 samples/sec/watt | 4.12 | 1x L40S | Supermicro SYS-521GE-TNRT | 25.04-py3 | Mixed | Synthetic | TensorRT 10.9 | NVIDIA L40S |
16 | 2,027 samples/sec | 6 samples/sec/watt | 15.79 | 1x L40S | Supermicro SYS-521GE-TNRT | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA L40S | |
HF ViT Base | 8 | 6,247 samples/sec | 18 samples/sec/watt | 1.28 | 1x L40S | Supermicro SYS-521GE-TNRT | 25.04-py3 | FP8 | Synthetic | TensorRT 10.9 | NVIDIA L40S |
HF ViT Large | 8 | 1,979 samples/sec | 6 samples/sec/watt | 4.04 | 1x L40S | Supermicro SYS-521GE-TNRT | 25.04-py3 | FP8 | Synthetic | TensorRT 10.9 | NVIDIA L40S |
QuartzNet | 8 | 7,570 samples/sec | 31 samples/sec/watt | 1.06 | 1x L40S | Supermicro SYS-521GE-TNRT | 25.04-py3 | Mixed | Synthetic | TensorRT 10.9 | NVIDIA L40S |
128 | 22,478 samples/sec | 65 samples/sec/watt | 5.69 | 1x L40S | Supermicro SYS-521GE-TNRT | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA L40S | |
RetinaNet-RN34 | 8 | 1,477 images/sec | 6 images/sec/watt | 5.42 | 1x L40S | Supermicro SYS-521GE-TNRT | 25.04-py3 | INT8 | Synthetic | TensorRT 10.9 | NVIDIA L40S |
HF Swin Base: Input Image Size = 224x224 | Window Size = 224x 224. HF Swin Large: Input Image Size = 224x224 | Window Size = 384x384
HF ViT Base: Input Image Size = 224x224 | Patch Size = 224x224. HF ViT Large: Input Image Size = 224x224 | Patch Size = 384x384
QuartzNet: Sequence Length = 256
View More Performance Data
Training to Convergence
Deploying AI in real-world applications requires training networks to convergence at a specified accuracy. This is the best methodology to test whether AI systems are ready to be deployed in the field to deliver meaningful results.
Learn MoreAI Pipeline
NVIDIA Riva is an application framework for multimodal conversational AI services that deliver real-performance on GPUs.
Learn More