Elasticsearch 分布式搜索与分析引擎技术详解与实践指南

简介: 本文档全面介绍 Elasticsearch 分布式搜索与分析引擎的核心概念、架构设计和实践应用。作为基于 Lucene 的分布式搜索引擎,Elasticsearch 提供了近实时的搜索能力、强大的数据分析功能和可扩展的分布式架构。本文将深入探讨其索引机制、查询 DSL、集群管理、性能优化以及与各种应用场景的集成,帮助开发者构建高性能的搜索和分析系统。
  1. Elasticsearch 架构概述与核心价值
    1.1 搜索技术演进历程
    传统搜索解决方案面临的主要挑战:

性能瓶颈:关系数据库模糊查询性能随数据量增长急剧下降

扩展性限制:单机架构无法处理海量数据和高并发查询

功能单一:缺乏相关性评分、分词、聚合分析等高级功能

实时性差:数据更新到可搜索状态延迟较高

1.2 Elasticsearch 的设计哲学
Elasticsearch 的设计遵循以下几个核心原则:

分布式架构:自动分片和副本机制实现水平扩展

近实时搜索:通过 refresh 机制实现秒级数据可搜索性

RESTful API:基于 HTTP 的简单易用的接口设计

JSON 文档存储:灵活的 schema-less 数据模型

多租户支持:通过索引机制实现数据隔离

1.3 Elasticsearch 的核心优势
相比传统搜索解决方案,Elasticsearch 提供以下显著优势:

高性能搜索:倒排索引结构实现毫秒级搜索响应

水平扩展性:轻松扩展到数百个节点的集群规模

丰富查询功能:支持全文搜索、过滤、聚合、地理搜索等

生态完整性:与 Logstash、Kibana 组成完整的 ELK 技术栈

多语言支持:提供 Java、Python、Go 等多种客户端

  1. 核心架构与数据模型
    2.1 集群架构与节点角色
    json
    // 集群状态查看
    GET /_cluster/health
    {
    "cluster_name": "my-application",
    "status": "green",
    "timed_out": false,
    "number_of_nodes": 3,
    "number_of_data_nodes": 2,
    "active_primary_shards": 10,
    "active_shards": 20,
    "relocating_shards": 0,
    "initializing_shards": 0,
    "unassigned_shards": 0,
    "delayed_unassigned_shards": 0,
    "number_of_pending_tasks": 0,
    "number_of_in_flight_fetch": 0,
    "task_max_waiting_in_queue_millis": 0,
    "active_shards_percent_as_number": 100.0
    }

// 节点角色配置
// elasticsearch.yml
node.roles: [ master, data, ingest ]

// 专用主节点配置
node.roles: [ master ]

// 专用数据节点配置
node.roles: [ data ]

// 专用协调节点配置
node.roles: [ ]
2.2 索引与分片机制
json
// 索引创建与分片配置
PUT /my-index
{
"settings": {
"number_of_shards": 3,
"number_of_replicas": 1,
"refresh_interval": "1s",
"index": {
"routing": {
"allocation": {
"require": {
"disk_type": "ssd"
}
}
}
}
},
"mappings": {
"properties": {
"title": {
"type": "text",
"analyzer": "ik_max_word",
"search_analyzer": "ik_smart"
},
"content": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword"
}
}
},
"create_time": {
"type": "date",
"format": "yyyy-MM-dd HH:mm:ss"
},
"user_id": {
"type": "integer"
},
"location": {
"type": "geo_point"
}
}
}
}

// 索引别名管理
POST /_aliases
{
"actions": [
{
"add": {
"index": "my-index-2023.11",
"alias": "my-index-current"
}
},
{
"remove": {
"index": "my-index-2023.10",
"alias": "my-index-current"
}
}
]
}

  1. 数据索引与文档管理
    3.1 文档 CRUD 操作
    java
    // Java 客户端文档操作示例
    @RestController
    public class DocumentController {

    private final ElasticsearchClient client;

    // 索引文档
    @PostMapping("/documents")
    public Response indexDocument(@RequestBody Document document) {

     IndexResponse response = client.index(i -> i .index("documents") .id(document.getId()) .document(document)); return Response.ok() .entity(Map.of( "id", response.id(), "result", response.result().name(), "version", response.version() )) .build(); 

    }

    // 获取文档
    @GetMapping("/documents/{id}")
    public Response getDocument(@PathVariable String id) {

     GetResponse<Document> response = client.get(g -> g .index("documents") .id(id), Document.class); if (response.found()) { return Response.ok(response.source()).build(); } else { return Response.status(Response.Status.NOT_FOUND).build(); } 

    }

    // 更新文档
    @PutMapping("/documents/{id}")
    public Response updateDocument(@PathVariable String id,

     @RequestBody Document document) { UpdateResponse<Document> response = client.update(u -> u .index("documents") .id(id) .doc(document), Document.class); return Response.ok() .entity(Map.of( "result", response.result().name(), "version", response.version() )) .build(); 

    }

    // 删除文档
    @DeleteMapping("/documents/{id}")
    public Response deleteDocument(@PathVariable String id) {

     DeleteResponse response = client.delete(d -> d .index("documents") .id(id)); return Response.ok() .entity(Map.of( "result", response.result().name() )) .build(); 

    }
    }

// 批量操作
public class BulkOperations {

public void bulkIndex(List<Document> documents) { BulkRequest.Builder br = new BulkRequest.Builder(); for (Document doc : documents) { br.operations(op -> op .index(idx -> idx .index("documents") .id(doc.getId()) .document(doc) ) ); } BulkResponse response = client.bulk(br.build()); if (response.errors()) { for (BulkResponseItem item : response.items()) { if (item.error() != null) { log.error("Error indexing document {}: {}", item.id(), item.error().reason()); } } } } 

}
3.2 索引模板与生命周期管理
json
// 索引模板配置
PUT /_index_template/my-template
{
"index_patterns": ["logs-*"],
"template": {
"settings": {
"number_of_shards": 2,
"number_of_replicas": 1,
"index.lifecycle.name": "logs-policy"
},
"mappings": {
"properties": {
"@timestamp": {
"type": "date"
},
"message": {
"type": "text"
},
"level": {
"type": "keyword"
}
}
}
},
"priority": 500
}

// 索引生命周期管理
PUT /_ilm/policy/logs-policy
{
"policy": {
"phases": {
"hot": {
"min_age": "0ms",
"actions": {
"rollover": {
"max_size": "50gb",
"max_age": "30d"
},
"set_priority": {
"priority": 100
}
}
},
"warm": {
"min_age": "30d",
"actions": {
"forcemerge": {
"max_num_segments": 1
},
"shrink": {
"number_of_shards": 1
},
"set_priority": {
"priority": 50
}
}
},
"cold": {
"min_age": "60d",
"actions": {
"freeze": {},
"set_priority": {
"priority": 0
}
}
},
"delete": {
"min_age": "90d",
"actions": {
"delete": {}
}
}
}
}
}

  1. 搜索查询与 DSL
    4.1 基础查询语法
    json
    // 基本搜索查询
    GET /documents/_search
    {
    "query": {
    "bool": {
    "must": [
     { "match": { "title": "elasticsearch 教程" } } 
    ],
    "filter": [
     { "range": { "create_time": { "gte": "2023-01-01", "lte": "2023-12-31" } } }, { "term": { "status": "published" } } 
    ],
    "should": [
     { "match": { "tags": "技术" } } 
    ],
    "must_not": [
     { "term": { "category": "archived" } } 
    ]
    }
    },
    "sort": [
    {
    "_score": {
     "order": "desc" 
    }
    },
    {
    "create_time": {
     "order": "desc" 
    }
    }
    ],
    "from": 0,
    "size": 20,
    "highlight": {
    "fields": {
    "title": {},
    "content": {
     "fragment_size": 150, "number_of_fragments": 3 
    }
    }
    },
    "_source": ["title", "create_time", "author"]
    }
    4.2 高级搜索功能
    json
    // 全文搜索与相关性调优
    GET /documents/_search
    {
    "query": {
    "multi_match": {
    "query": "分布式搜索技术",
    "fields": ["title^3", "content^2", "tags^1.5"],
    "type": "best_fields",
    "tie_breaker": 0.3
    }
    },
    "rescore": {
    "window_size": 100,
    "query": {
    "rescore_query": {
     "match_phrase": { "content": { "query": "分布式搜索技术", "slop": 2 } } 
    },
    "query_weight": 0.7,
    "rescore_query_weight": 1.2
    }
    }
    }

// 模糊搜索与纠错
GET /documents/_search
{
"query": {
"fuzzy": {
"title": {
"value": "elastisearch",
"fuzziness": "AUTO",
"max_expansions": 50,
"prefix_length": 0,
"transpositions": true
}
}
}
}

// 同义词搜索
PUT /documents/_settings
{
"analysis": {
"filter": {
"my_synonyms": {
"type": "synonym",
"synonyms": [
"搜索,查找,查询,检索",
"教程,指南,手册,说明"
]
}
},
"analyzer": {
"my_analyzer": {
"tokenizer": "ik_max_word",
"filter": ["my_synonyms"]
}
}
}
}

  1. 聚合分析与数据统计
    5.1 指标聚合与桶聚合
    json
    // 多维度聚合分析
    GET /sales/_search
    {
    "size": 0,
    "aggs": {
    "total_sales": {
    "sum": {
     "field": "amount" 
    }
    },
    "avg_sale_amount": {
    "avg": {
     "field": "amount" 
    }
    },
    "sales_by_category": {
    "terms": {
     "field": "category.keyword", "size": 10, "order": { "total_sales": "desc" } 
    },
    "aggs": {
     "total_sales": { "sum": { "field": "amount" } }, "monthly_trend": { "date_histogram": { "field": "sale_date", "calendar_interval": "month", "format": "yyyy-MM" }, "aggs": { "monthly_sales": { "sum": { "field": "amount" } } } }, "significant_terms": { "significant_terms": { "field": "product_name.keyword" } } 
    }
    },
    "sales_histogram": {
    "histogram": {
     "field": "amount", "interval": 100, "extended_bounds": { "min": 0, "max": 1000 } 
    }
    },
    "geo_aggregation": {
    "geohash_grid": {
     "field": "location", "precision": 5 
    },
    "aggs": {
     "total_sales": { "sum": { "field": "amount" } } 
    }
    }
    }
    }
    5.2 管道聚合与复杂分析
    json
    // 管道聚合示例
    GET /sales/_search
    {
    "size": 0,
    "aggs": {
    "sales_by_date": {
    "date_histogram": {
     "field": "sale_date", "calendar_interval": "day" 
    },
    "aggs": {
     "daily_sales": { "sum": { "field": "amount" } }, "moving_avg": { "moving_avg": { "buckets_path": "daily_sales", "window": 7, "model": "simple" } }, "cumulative_sales": { "cumulative_sum": { "buckets_path": "daily_sales" } }, "sales_diff": { "derivative": { "buckets_path": "daily_sales" } } 
    }
    },
    "stats_by_region": {
    "terms": {
     "field": "region.keyword" 
    },
    "aggs": {
     "sales_stats": { "stats": { "field": "amount" } }, "top_products": { "terms": { "field": "product_name.keyword", "size": 5 } }, "percentile_ranks": { "percentile_ranks": { "field": "amount", "values": [100, 500, 1000] } } 
    }
    }
    }
    }
  2. 集群管理与运维
    6.1 集群监控与健康检查
    json
    // 集群健康监控
    GET /_cluster/health?level=indices
    GET /_cluster/stats
    GET /_nodes/stats

// 索引状态监控
GET /_cat/indices?v&s=index
GET /_cat/shards?v
GET /_cat/allocation?v

// 节点监控
GET /_cat/nodes?v&h=name,ip,heap.percent,ram.percent,cpu,load_1m,node.role
GET /_nodes/hot_threads
6.2 备份与恢复策略
json
// 快照仓库配置
PUT /_snapshot/my_backup
{
"type": "fs",
"settings": {
"location": "/mnt/elasticsearch_backups",
"compress": true,
"max_snapshot_bytes_per_sec": "50mb",
"max_restore_bytes_per_sec": "50mb"
}
}

// 创建快照
PUT /_snapshot/my_backup/snapshot_202311
{
"indices": "logs-,documents-",
"ignore_unavailable": true,
"include_global_state": false,
"metadata": {
"taken_by": "admin",
"taken_because": "monthly backup"
}
}

// 恢复快照
POST /_snapshot/my_backup/snapshot_202311/_restore
{
"indices": "logs-2023-11-*",
"ignore_unavailable": true,
"include_global_state": false,
"rename_pattern": "logs-(.+)",
"rename_replacement": "restoredlogs$1"
}

// 快照状态检查
GET /_snapshot/my_backup/snapshot_202311/_status

  1. 性能优化与调优
    7.1 索引性能优化
    json
    // 索引设置优化
    PUT /my_optimized_index
    {
    "settings": {
    "number_of_shards": 5,
    "number_of_replicas": 1,
    "refresh_interval": "30s",
    "index": {
    "number_of_routing_shards": 30,
    "translog": {
     "durability": "async", "sync_interval": "5s", "flush_threshold_size": "1gb" 
    },
    "merge": {
     "scheduler": { "max_thread_count": 1 }, "policy": { "segments_per_tier": 10, "max_merged_segment": "5gb" } 
    }
    }
    },
    "mappings": {
    "_source": {
    "enabled": true,
    "excludes": ["large_binary_field"],
    "includes": ["title", "content", "timestamp"]
    },
    "dynamic": "strict",
    "properties": {
    "title": {
     "type": "text", "norms": false, "index_options": "positions" 
    },
    "tags": {
     "type": "keyword", "doc_values": true, "ignore_above": 256 
    }
    }
    }
    }

// 批量索引优化
POST /_bulk
{ "index" : { "_index" : "test", "_id" : "1" } }
{ "field1" : "value1" }
{ "index" : { "_index" : "test", "_id" : "2" } }
{ "field1" : "value2" }
7.2 查询性能优化
json
// 查询优化策略
GET /documents/_search
{
"query": {
"bool": {
"must": [
{
"constant_score": {
"filter": {
"term": {
"status": "active"
}
}
}
}
]
}
},
"size": 100,
"track_total_hits": false,
"search_after": [1635724800000, "doc123"],
"sort": [
{
"timestamp": {
"order": "desc"
}
},
{
"_id": {
"order": "desc"
}
}
],
"preference": "primary_first",
"routing": "user123"
}

// 索引排序优化
PUT /my_sorted_index
{
"settings": {
"index": {
"sort.field": ["timestamp", "user_id"],
"sort.order": ["desc", "asc"]
}
}
}

  1. 安全与权限控制
    8.1 安全配置
    yaml

    elasticsearch.yml 安全配置

    xpack.security.enabled: true
    xpack.security.transport.ssl.enabled: true
    xpack.security.transport.ssl.verification_mode: certificate
    xpack.security.transport.ssl.keystore.path: elastic-certificates.p12
    xpack.security.transport.ssl.truststore.path: elastic-certificates.p12
    xpack.security.http.ssl.enabled: true
    xpack.security.http.ssl.keystore.path: http-keystore.p12

用户角色配置

通过 Kibana 或 API 管理用户和角色

8.2 权限控制
json
// 角色定义
POST /_security/role/search_role
{
"cluster": ["monitor"],
"indices": [
{
"names": ["logs-", "documents-"],
"privileges": ["read", "view_index_metadata"],
"query": {
"term": {
"department": "engineering"
}
}
}
],
"applications": [
{
"application": "kibana-.kibana",
"privileges": ["read"],
"resources": ["*"]
}
]
}

// API 密钥管理
POST /_security/api_key
{
"name": "my-api-key",
"expiration": "7d",
"role_descriptors": {
"limited-write": {
"cluster": ["monitor"],
"indices": [
{
"names": ["logs-*"],
"privileges": ["write", "create_index"],
"allow_restricted_indices": false
}
]
}
}
}

  1. 与应用系统集成
    9.1 Spring Boot 集成
    java
    // Spring Data Elasticsearch 配置
    @Configuration
    @EnableElasticsearchRepositories
    public class ElasticsearchConfig {

    @Bean
    public RestHighLevelClient elasticsearchClient() {

     ClientConfiguration clientConfiguration = ClientConfiguration.builder() .connectedTo("localhost:9200") .withConnectTimeout(Duration.ofSeconds(5)) .withSocketTimeout(Duration.ofSeconds(30)) .withBasicAuth("username", "password") .build(); return RestClients.create(clientConfiguration).rest(); 

    }

    @Bean
    public ElasticsearchOperations elasticsearchTemplate() {

     return new ElasticsearchRestTemplate(elasticsearchClient()); 

    }
    }

// Repository 定义
public interface DocumentRepository extends ElasticsearchRepository {

List<Document> findByTitleContaining(String title); Page<Document> findByContentAndStatus(String content, String status, Pageable pageable); @Query("{\"match\": {\"title\": \"?0\"}}") List<Document> findByTitleCustom(String title); 

}

// 自定义搜索服务
@Service
public class SearchService {

private final ElasticsearchOperations operations; private final DocumentRepository repository; public SearchResult<Document> searchDocuments(SearchRequest request) { NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder(); if (StringUtils.hasText(request.getKeyword())) { queryBuilder.withQuery(QueryBuilders.multiMatchQuery(request.getKeyword(), "title", "content", "tags")); } if (request.getFilters() != null) { BoolQueryBuilder filterQuery = QueryBuilders.boolQuery(); request.getFilters().forEach((field, value) -> { filterQuery.filter(QueryBuilders.termQuery(field, value)); }); queryBuilder.withFilter(filterQuery); } queryBuilder.withPageable(PageRequest.of(request.getPage(), request.getSize())); queryBuilder.withSort(Sort.by(Sort.Direction.DESC, "createTime")); SearchHits<Document> searchHits = operations.search(queryBuilder.build(), Document.class); return SearchResult.of(searchHits.getSearchHits(), searchHits.getTotalHits()); } 

}
9.2 实时数据同步
java
// 使用 Logstash 进行数据同步

logstash.conf

input {
jdbc {
jdbc_driver_library => "/path/to/mysql-connector-java.jar"
jdbc_driver_class => "com.mysql.jdbc.Driver"
jdbc_connection_string => "jdbc:mysql://localhost:3306/mydb"
jdbc_user => "username"
jdbc_password => "password"
schedule => "/5 "
statement => "SELECT
FROM documents WHERE update_time > :sql_last_value"
use_column_value => true
tracking_column => "update_time"
}
}

filter {
mutate {
remove_field => ["@version", "@timestamp"]
}
date {
match => ["create_time", "yyyy-MM-dd HH:mm:ss"]
target => "@timestamp"
}
}

output {
elasticsearch {
hosts => ["localhost:9200"]
index => "documents"
document_id => "%{id}"
}
}

// 使用 Canal 进行 MySQL 实时同步
public class CanalElasticsearchSync {

public void syncToElasticsearch(List<?> data) { BulkRequest bulkRequest = new BulkRequest(); for (Object item : data) { IndexRequest indexRequest = new IndexRequest("documents") .id(getId(item)) .source(convertToMap(item), XContentType.JSON); bulkRequest.add(indexRequest); } BulkResponse response = client.bulk(bulkRequest, RequestOptions.DEFAULT); if (response.hasFailures()) { log.error("Bulk sync failed: {}", response.buildFailureMessage()); } } 

}

  1. 生产环境最佳实践
    10.1 集群规划
    yaml

    生产环境集群配置

    主节点配置 (3个节点)

    node.roles: [ master ]
    node.master: true
    node.data: false
    node.ingest: false

数据节点配置 (多个节点)

node.roles: [ data ]
node.master: false
node.data: true
node.ingest: false

协调节点配置

node.roles: [ ]
node.master: false
node.data: false
node.ingest: true

JVM 配置

-Xms16g
-Xmx16g
-XX:+UseG1GC
-XX:MaxGCPauseMillis=200
10.2 监控告警
json
// Elasticsearch 监控指标
GET /_cluster/stats
GET /_nodes/stats/indices,os,jvm

// 使用 Prometheus 监控

prometheus.yml

scrape_configs:

  • job_name: 'elasticsearch'
    static_configs:
    • targets: ['localhost:9200']
      metrics_path: '/_prometheus/metrics'

// 告警规则配置

alert.rules

groups:

  • name: elasticsearch
    rules:

    • alert: ClusterStatusRed
      expr: elasticsearch_cluster_health_status > 0
      for: 5m
      labels:
      severity: critical
      annotations:
      summary: "Elasticsearch cluster status is RED"

    • alert: HighJVMUsage
      expr: elasticsearch_jvm_memory_used_percent > 80
      for: 2m
      labels:
      severity: warning
      总结
      Elasticsearch 作为分布式搜索和分析引擎,通过其强大的倒排索引、分布式架构和丰富的查询功能,为现代应用提供了高效的数据检索和分析能力。其近实时搜索、水平扩展和完整的生态系统使其成为处理海量数据的理想选择。

在实际应用中,开发者需要根据数据特性和查询模式合理设计索引结构、分片策略和查询优化。生产环境中还需要关注集群监控、备份恢复和安全配置等方面。

随着大数据和实时分析需求的不断增长,Elasticsearch 在日志分析、业务搜索、监控系统等场景中的应用越来越广泛。掌握 Elasticsearch 不仅能够提升应用的数据处理能力,更能为构建智能化的数据驱动应用奠定坚实基础。

目录
相关文章
|
20天前
|
负载均衡 测试技术 调度
大模型分布式推理:张量并行与流水线并行技术
本文深入探讨大语言模型分布式推理的核心技术——张量并行与流水线并行。通过分析单GPU内存限制下的模型部署挑战,详细解析张量并行的矩阵分片策略、流水线并行的阶段划分机制,以及二者的混合并行架构。文章包含完整的分布式推理框架实现、通信优化策略和性能调优指南,为千亿参数大模型的分布式部署提供全面解决方案。
347 4
|
24天前
|
缓存 监控 前端开发
顺企网 API 开发实战:搜索 / 详情接口从 0 到 1 落地(附 Elasticsearch 优化 + 错误速查)
企业API开发常陷参数、缓存、错误处理三大坑?本指南拆解顺企网双接口全流程,涵盖搜索优化、签名验证、限流应对,附可复用代码与错误速查表,助你2小时高效搞定开发,提升响应速度与稳定性。
|
1月前
|
存储 Linux iOS开发
Elasticsearch Enterprise 9.1.5 发布 - 分布式搜索和分析引擎
Elasticsearch Enterprise 9.1.5 (macOS, Linux, Windows) - 分布式搜索和分析引擎
218 0
|
1月前
|
机器学习/深度学习 监控 PyTorch
68_分布式训练技术:DDP与Horovod
随着大型语言模型(LLM)规模的不断扩大,从早期的BERT(数亿参数)到如今的GPT-4(万亿级参数),单卡训练已经成为不可能完成的任务。分布式训练技术应运而生,成为大模型开发的核心基础设施。2025年,分布式训练技术已经发展到相当成熟的阶段,各种优化策略和框架不断涌现,为大模型训练提供了强大的支持。
|
3月前
|
存储 负载均衡 NoSQL
【赵渝强老师】Redis Cluster分布式集群
Redis Cluster是Redis的分布式存储解决方案,通过哈希槽(slot)实现数据分片,支持水平扩展,具备高可用性和负载均衡能力,适用于大规模数据场景。
282 2
|
3月前
|
存储 缓存 NoSQL
【📕分布式锁通关指南 12】源码剖析redisson如何利用Redis数据结构实现Semaphore和CountDownLatch
本文解析 Redisson 如何通过 Redis 实现分布式信号量(RSemaphore)与倒数闩(RCountDownLatch),利用 Lua 脚本与原子操作保障分布式环境下的同步控制,帮助开发者更好地理解其原理与应用。
221 6
|
4月前
|
存储 缓存 NoSQL
Redis核心数据结构与分布式锁实现详解
Redis 是高性能键值数据库,支持多种数据结构,如字符串、列表、集合、哈希、有序集合等,广泛用于缓存、消息队列和实时数据处理。本文详解其核心数据结构及分布式锁实现,帮助开发者提升系统性能与并发控制能力。
|
8月前
|
数据采集 存储 数据可视化
分布式爬虫框架Scrapy-Redis实战指南
本文介绍如何使用Scrapy-Redis构建分布式爬虫系统,采集携程平台上热门城市的酒店价格与评价信息。通过代理IP、Cookie和User-Agent设置规避反爬策略,实现高效数据抓取。结合价格动态趋势分析,助力酒店业优化市场策略、提升服务质量。技术架构涵盖Scrapy-Redis核心调度、代理中间件及数据解析存储,提供完整的技术路线图与代码示例。
792 0
分布式爬虫框架Scrapy-Redis实战指南
|
2月前
|
NoSQL Java 调度
分布式锁与分布式锁使用 Redis 和 Spring Boot 进行调度锁(不带 ShedLock)
分布式锁是分布式系统中用于同步多节点访问共享资源的机制,防止并发操作带来的冲突。本文介绍了基于Spring Boot和Redis实现分布式锁的技术方案,涵盖锁的获取与释放、Redis配置、服务调度及多实例运行等内容,通过Docker Compose搭建环境,验证了锁的有效性与互斥特性。
169 0
分布式锁与分布式锁使用 Redis 和 Spring Boot 进行调度锁(不带 ShedLock)
|
2月前
|
缓存 NoSQL 关系型数据库
Redis缓存和分布式锁
Redis 是一种高性能的键值存储系统,广泛用于缓存、消息队列和内存数据库。其典型应用包括缓解关系型数据库压力,通过缓存热点数据提高查询效率,支持高并发访问。此外,Redis 还可用于实现分布式锁,解决分布式系统中的资源竞争问题。文章还探讨了缓存的更新策略、缓存穿透与雪崩的解决方案,以及 Redlock 算法等关键技术。

热门文章

最新文章

下一篇