数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。

简介: 这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。

前言

一、单源最短路径

1、单源最短路径问题

  • 解决的问题: 求解单源最短路径,即各个节点到达源点的最短路径或权值。如下图中
    在这里插入图片描述
    考察其他所有节点到源点的最短路径和长度
  • 局限性: 无法解决权值为负数的情况
  • 资料

2、Dijkstra 初始化

首先已知的是:
给定 邻接矩阵表示的图Graph、源点S、终点T

a、参数

参数:

参数名 解释
S 记录当前已经处理过的源点到最短节点
U 记录还未处理的节点
dist[] 记录各个节点到起始节点的最短权值
path[] 记录各个节点的上一级节点(用来联系该节点到起始节点的路径)

b、初始化参数

  • 顶点集S: 节点A到自已的最短路径长度为0。只包含源点,即S={A},代码中没有这个,这里是为了步骤清晰而设置的。
  • 顶点集U: 包含除A外的其他顶点. 即U={B,C,D,E,F,G}
  • dist[]: 源点还不能到达的节点,其权值为∞
A B C D E F G
dist[]: 0 1 2 3 4 5 6
初始化值: 0 4 6 6

path[]: 记录当前节点的前驱节点下标(源点还不能到达的节点为-1)

A B C D E F G
path[]: 0 1 2 3 4 5 6
初始化值: 0 0 0 0 -1 -1 -1

c、算法步骤

在这里插入图片描述

  1. 初始化:设定除源节点以外的其它所有节点到源节点的距离为INFINITE(一个很大的数),且这些节点都没被处理过。如上图所示
  2. 从源节点出发,更新相邻节点(图中为B、C、D)到源节点的距离。然后在所有节点中选择一个最段距离的点作为当前节点。
  3. 标记当前节点为done(表示已经被处理过),与步骤2类似,更新其相邻节点的距离。(这些相邻节点的距离更新也叫 松弛,目的是让它们与源节点的距离最小。因为你是在当前最小距离的基础上进行更新的,由于当前节点到源节点的距离已经是最小的了,那么如果这些节点之前得到的距离比这个距离大的话,我们就更新它)。
  4. 步骤3做完以后,设置这个当前节点已被done,然后寻找下一个具有最小代价(cost)的点,作为新的当前节点,重复步骤3.
  5. 如果最后检测到目标节点时,其周围所有的节点都已被处理,那么目标节点与源节点的距离就是最小距离了。如果想看这个最小距离所经过的路径,可以回溯,前提是你在步骤3里面加入了当前节点的最优路径前驱节点信息。
  • 我总结了下可用如下几句话代替:
    两步走
    1. 从dist[]中在集合U中的选择最小距离加入到S中,作为当前节点。(最小距离:就是 当前节点到源点的最小距离)
    2. 遍历当前节点的邻边节点:更新dist[]和path[]
      • 如果经过当前节点+邻边权重 < 邻边节点,则改变dist[]和path[],否者不改变。

3、Dijkstra 算法详细步骤

a、第一轮算法执行

在这里插入图片描述

  • 如上图,因为dist[]中排出掉集合U中节点,最小值是4,也就是节点B,所以将B纳入到集合S中(圈中)。

  • 首先 在dist[]数组中并在集合U中 最小值是节点B,既当前节点,其邻边有C和E,所以看是否要更新C和E。

    • 节点C:因为C的最小距离dist[1](B的最小距离)4+1(B到C的距离)=5 < dist[2](C的最小距离) = 6,所以 dist[2]=5,path[2]=1
    • 节点E:因为E的最小距离 dist[1](B的最小距离)4+7(B到E的距离)=11 < dist[4] (E的最小距离)=无穷大,所以 dist[4]=11,path[4]=1
  • 第一轮算法两个邻边节点C、E有改变

b、第二轮算法执行

在这里插入图片描述

  • 如上图,因为dist[]中排除掉集合U中节点,最小值是5,也就是节点C,所以将C纳入到集合S中(圈中)。
  • 首先在dist[]数组中并在集合U中 最小值是节点C,既当前节点,其邻边有E和F,所以看是否要更新E和F。
    • 节点E:因为C的最小距离 dist[2](也就是C的最小距离)5+6(C到E的距离)=11 == dist[4](E的最小距离) = 11,所以不动
    • 节点F:因为F的最小距离 dist[2](也就是C的最小距离)5+4(C到F的距离)=9 < dist[5] (F的最小距离)=无穷大,所以 dist[5]=9,path[5]=2
  • 第二轮算法两个邻边节点仅有 F有改变

c、第三轮算法执行

在这里插入图片描述

  • 如上图,因为dist[]中排出掉集合U中节点,最小值是6,也就是节点D,所以将D纳入到集合S中(圈中)。
  • 首先在dist[]数组中并在集合U中 最小值是节点D,既当前节点,其邻边有C和F,所以看是否要更新C和F。
  • 节点C:因为C的最小距离 dist[3](也就是D的最小距离)6+2(D到C的距离)=8 > dist[2](C的最小距离) = 5 ,所以不动
  • 节点F:因为F的最小距离 dist[3](也就是D的最小距离)6+5(D到F的距离)=11 > dist[5] (F的最小距离)=9,所以不动
  • 第三轮算法两个邻边节点C、F都没有改变

d、第四轮算法执行

在这里插入图片描述

  • 如上图,因为dist[]中排出掉集合U中节点,最小值是9,也就是节点F,所以将F纳入到集合S中(圈中)。
  • 首先在dist[]数组中并在集合U中 最小值是节点F,既当前节点,其邻边有E和G,所以看是否要更新E和G 。
  • 节点E:因为E的最小距离 dist[5](也就是F的最小距离) 9 +1(F到E的距离)=10 < dist[4](E的最小距离) =11,所以 dist[4] = 10,path[4]=5
  • 节点G:因为G的最小距离 dist[5](也就是F的最小距离) 9 +8(F到G的距离)=17 < dist[6](G的最小距离) =无穷大,所以 dist[6]=17,path[6]=5
  • 第四轮算法两个邻边节点E、G都有改变

e、第五轮算法执行

在这里插入图片描述

  • 如上图,因为dist[]中排出掉集合U中节点,最小值是9,也就是节点F,所以将F纳入到集合S中(圈中)。
  • 首先在dist[]数组中并在集合U中 最小值是节点E,既当前节点,其邻边有G,所以看是否要更新G
  • 节点G:因为G的最小距离 dist[4](也就是E的最小距离) 10 +6(E到G的距离)=16 < dist[6](G的最小距离) =17,所以 dist[6]=16,path[6]=4
  • 第五轮算法邻边 节点G有改变

f、第六轮算法执行

在这里插入图片描述

  • 如上图,因为dist[]中排出掉集合U中节点,最小值是16,也就是节点G,所以将G纳入到集合S中(圈中)。
  • 首先在dist[]数组中并在集合U中 最小值是节点G,既当前节点,其没有邻边。
  • 第六轮算法邻边节点G没有改变
  • 到此算法遍历结束

4、java算法实现

给定矩阵表示的Graph结构。输入源点v0和终点v1。

二、多源最短路径

1、多源最短路径问题

  • 上面的Dijkstra 解决的是单源最短路径的问题,首先要给定 开始节点和终止结点,如果换了开始和终止节点,那就要每次都要重新跑一次。
  • 那就引出了多源最短路径问题:就是执行一次算法,求出每两个点之间的最短距离,这就是多源最短路径算法。这个算法代码略简单一些。
  • 思想只有一个:要算两个点之间的最短距离,就看有没有第三个点使得

2、Floyd初始化

首先已知的是:
给定 **邻接矩阵表示的图Graph。

a、参数

参数名 解释
A[][] 函数中的参数,需要返回,存储的是节点的前置节点。
path[][] 存储的是每两点之间的所需距离。

b、参数初始化

参数名 解释
A[][] 就是图的赋值,从代码中可以看出,比较简单
path[][] 默认都是-1.表示从A点到B点是直达的。

c、算法步骤

  1. 对于每个顶点v(体现在代码的第一层for循环),和任意一顶点(i,j)(体现代码的第二、三层循环),切 i!=j、v!=i、v!=j
  2. 如果A[i][j] > A[i][v] + A[]v[j],则将A[i][j] 更新为 A[i][v] + A[v][j] 的值,并且将path[i][j]改为v

3、Floyd算法详细步骤

4、java 算法实现

package com.feng.algorithm.self_learn.floyd.floyd1; /** * 学习视频:https://www.bilibili.com/video/BV1LE411R7CS */ public class FloydAlgorithm { public static void main(String[] args) { int[][] graph = new int[4][4]; int N = Short.MAX_VALUE; graph[0] = new int[]{0, 5, N, 7}; graph[1] = new int[]{N, 0, 4, 2}; graph[2] = new int[]{3, 3, 0, 2}; graph[3] = new int[]{N, N, 1, 0}; int[][] path = new int[4][4]; int[][] A = Floyd.floyd(graph, path); int u = 1; int v = 0; Floyd.printPath(u, v, path); System.out.println(); System.out.println(u + "->" + v +" shortest path is :" + A[u][v]); } } class Floyd { /** * 佛洛依德算法,给定邻接矩阵表示的图, * path[][]:存放路径中间的节点,如果是-1就是直达 * A[][]:存放任意两个节点之间的距离 * 举例:从1-0,从A得出距离是6,从path得出 1-3-2-0 * @param graph * @param path */ static int[][] floyd(int[][] graph, int[][] path) { int n = graph.length; int v, i, j; int[][] A = new int[n][n]; for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { A[i][j] = graph[i][j]; path[i][j] = -1; } } for (v = 0; v < n; v++) { for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { if (A[i][j] > A[i][v] + A[v][j]) { A[i][j] = A[i][v] + A[v][j]; path[i][j] = v; } } } } return A; } /** * 递归打印路径 * @param u * @param v * @param path */ static void printPath(int u, int v, int[][] path) { if (path[u][v] == -1) { // 如果等于 -1 。说明就是直达的 System.out.printf(u + "->" + v + " "); } else { int mid = path[u][v]; printPath(u, mid, path); printPath(mid, v, path); } } } 
相关文章
|
26天前
|
设计模式 算法 搜索推荐
Java 设计模式之策略模式:灵活切换算法的艺术
策略模式通过封装不同算法并实现灵活切换,将算法与使用解耦。以支付为例,微信、支付宝等支付方式作为独立策略,购物车根据选择调用对应支付逻辑,提升代码可维护性与扩展性,避免冗长条件判断,符合开闭原则。
237 35
|
1月前
|
存储 Java 索引
用Java语言实现一个自定义的ArrayList类
自定义MyArrayList类模拟Java ArrayList核心功能,支持泛型、动态扩容(1.5倍)、增删改查及越界检查,底层用Object数组实现,适合学习动态数组原理。
83 4
|
1月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
1月前
|
Java
Java语言实现字母大小写转换的方法
Java提供了多种灵活的方法来处理字符串中的字母大小写转换。根据具体需求,可以选择适合的方法来实现。在大多数情况下,使用 String类或 Character类的方法已经足够。但是,在需要更复杂的逻辑或处理非常规字符集时,可以通过字符流或手动遍历字符串来实现更精细的控制。
212 18
|
存储 Java 编译器
Java语言------图书馆管理系统(入门简略版)
Java语言------图书馆管理系统(入门简略版)
255 0
Java语言------图书馆管理系统(入门简略版)
|
Java
Java学习路线-53:EL(表达式语言)入门及 EL 函数库
Java学习路线-53:EL(表达式语言)入门及 EL 函数库
174 0
|
JavaScript 前端开发 Java
java语言入门总结
java语言入门总结
201 0
|
设计模式 Java 关系型数据库
java语言学习路线目录,从入门到资深工程师要掌握的技术
1.JAVA知识基础 1.1JAVA基础 推荐书籍:编程思想 1.掌握java常用技术,io、多线程、反射、常用集合框架 2.对处理输入输出的IO进行熟悉,用于笔试
198 0
|
小程序 安全 前端开发
【Java编程进阶】Java语言基础入门篇
整个Java全栈编程知识体系十分庞大,包括JavaSE知识,Web前端,Web后端,数据库相关的知识等,初学者应该系统踏实的学习,一步一个脚印。Java语言是一种完全面向对象的跨平台语言。有很多突出的优点,例如简单易学,面向对象,分布式,安全可靠,解释型语言,跨平台运行,可移植高性能多线程,可实现网络编程等。
359 0
【Java编程进阶】Java语言基础入门篇
Java学习路线-53:EL(表达式语言)入门及 EL 函数库
Java学习路线-53:EL(表达式语言)入门及 EL 函数库
130 0

热门文章

最新文章

下一篇