Hadoop-19 Flume Agent批量采集数据到HDFS集群 监听Hive的日志 操作则把记录写入到HDFS 方便后续分析

简介: Hadoop-19 Flume Agent批量采集数据到HDFS集群 监听Hive的日志 操作则把记录写入到HDFS 方便后续分析

章节内容

上一节我们完成了内容:


Flume 启动测试

Flume Conf编写

Flume 测试发送和接收数据

背景介绍

这里是三台公网云服务器,每台 2C4G,搭建一个Hadoop的学习环境,供我学习。

之前已经在 VM 虚拟机上搭建过一次,但是没留下笔记,这次趁着前几天薅羊毛的3台机器,赶紧尝试在公网上搭建体验一下。


2C4G 编号 h121

2C4G 编号 h122

2C2G 编号 h123

文档推荐

除了官方文档以外,这里有一个写的很好的中文文档:

https://flume.liyifeng.org/

环境准备

要将数据写入到 HDFS 中,我们需要一些支持库来完成。

(这些支持库基本都在Hadoop的支持库中,没有的话,大家可以到Maven仓库搜索下载补充一下)


cd $HADOOP_HOME/share/hadoop/httpfs/tomcat/webapps/webhdfs/WEB-INF/lib

commons-configuration-1.6.jar

commons-io-2.4.jar

hadoop-auth-2.9.0.jar

hadoop-common-2.9.0.jar

hadoop-hdfs-2.9.0.jar

htrace-core4-4.1.0-incubating.jar

你需要把这些Jar包都拷贝到 $FLUME_HOME/lib 文件夹下:

cd $FLUME_HOME/lib ls

配置文件

cd vim flume-exec-hdfs.conf

编写如下的内容:

# Name the components on this agent a2.sources = r2 a2.sinks = k2 a2.channels = c2  # Describe/configure the source a2.sources.r2.type = exec a2.sources.r2.command = tail -F /tmp/root/hive.log # Use a channel which buffers events in memory a2.channels.c2.type = memory a2.channels.c2.capacity = 10000 a2.channels.c2.transactionCapacity = 500  # Describe the sink a2.sinks.k2.type = hdfs # 这里注意修改为服务器的IP!!! # 注意是 HDFS 的,别写错了,具体看 Hadoop 的 core-site.xml fs.defaultFS a2.sinks.k2.hdfs.path = hdfs://h121.wzk.icu:9000/flume/%Y%m%d/%H%M # 上传文件的前缀 a2.sinks.k2.hdfs.filePrefix = logs- # 是否使用本地时间戳 a2.sinks.k2.hdfs.useLocalTimeStamp = true # 积攒500个Event才flush到HDFS一次 a2.sinks.k2.hdfs.batchSize = 500 # 设置文件类型,支持压缩。DataStream没启用压缩 a2.sinks.k2.hdfs.fileType = DataStream  # 1分钟滚动一次 a2.sinks.k2.hdfs.rollInterval = 60 # 128M滚动一次 a2.sinks.k2.hdfs.rollSize = 134217700 # 文件的滚动与Event数量无关 a2.sinks.k2.hdfs.rollCount = 0  # 最小冗余数 a2.sinks.k2.hdfs.minBlockReplicas = 1 # Bind the source and sink to the channel a2.sources.r2.channels = c2 a2.sinks.k2.channel = c2

启动Agent

$FLUME_HOME/bin/flume-ng agent --name a2 \ --conf-file flume-exec-hdfs.conf \ -Dflume.root.logger=INFO,console

如果你启动一切顺利的话,你可以看到如下的内容:

测试效果

启动集群

start-dfs.sh start-yarn.sh

启动Hive

hive -e "show databases;"

查看日志

可以看到 Flume 上有了输出

查看HDFS

观察HDFS,发现数据已经写入了:

相关实践学习
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
目录
相关文章
|
27天前
|
数据采集 缓存 大数据
【赵渝强老师】大数据日志采集引擎Flume
Apache Flume 是一个分布式、可靠的数据采集系统,支持从多种数据源收集日志信息,并传输至指定目的地。其核心架构由Source、Channel、Sink三组件构成,通过Event封装数据,保障高效与可靠传输。
151 1
|
2月前
|
监控 安全 搜索推荐
使用EventLog Analyzer进行日志取证分析
EventLog Analyzer助力企业通过集中采集、归档与分析系统日志及syslog,快速构建“数字犯罪现场”,精准追溯安全事件根源。其强大搜索功能可秒级定位入侵时间、人员与路径,生成合规与取证报表,确保日志安全防篡改,大幅提升调查效率,为执法提供有力证据支持。
131 0
|
7月前
|
存储 运维 监控
SelectDB 实现日志高效存储与实时分析,完成任务可领取积分、餐具套装/水杯/帆布包!
SelectDB 实现日志高效存储与实时分析,完成任务可领取积分、餐具套装/水杯/帆布包!
|
7月前
|
SQL 监控 数据挖掘
SLS 重磅升级:超大规模数据实现完全精确分析
SLS 全新推出的「SQL 完全精确」模式,通过“限”与“换”的策略切换,在快速分析与精确计算之间实现平衡,满足用户对于超大数据规模分析结果精确的刚性需求。标志着其在超大规模日志数据分析领域再次迈出了重要的一步。
547 118
|
4月前
|
监控 安全 NoSQL
【DevOps】Logstash详解:高效日志管理与分析工具
Logstash是ELK Stack核心组件之一,具备强大的日志收集、处理与转发能力。它支持多种数据来源,提供灵活的过滤、转换机制,并可通过插件扩展功能,广泛应用于系统日志分析、性能优化及安全合规等领域,是现代日志管理的关键工具。
689 0
|
6月前
|
自然语言处理 监控 安全
阿里云发布可观测MCP!支持自然语言查询和分析多模态日志
阿里云可观测官方发布了Observable MCP Server,提供了一系列访问阿里云可观测各产品的工具能力,包含阿里云日志服务SLS、阿里云应用实时监控服务ARMS等,支持用户通过自然语言形式查询
791 0
阿里云发布可观测MCP!支持自然语言查询和分析多模态日志
|
5月前
|
人工智能 运维 监控
Aipy实战:分析apache2日志中的网站攻击痕迹
Apache2日志系统灵活且信息全面,但安全分析、实时分析和合规性审计存在较高技术门槛。为降低难度,可借助AI工具如aipy高效分析日志,快速发现攻击痕迹并提供反制措施。通过结合AI与学习技术知识,新手运维人员能更轻松掌握复杂日志分析任务,提升工作效率与技能水平。
|
8月前
|
存储 消息中间件 缓存
MiniMax GenAI 可观测性分析 :基于阿里云 SelectDB 构建 PB 级别日志系统
基于阿里云SelectDB,MiniMax构建了覆盖国内及海外业务的日志可观测中台,总体数据规模超过数PB,日均新增日志写入量达数百TB。系统在P95分位查询场景下的响应时间小于3秒,峰值时刻实现了超过10GB/s的读写吞吐。通过存算分离、高压缩比算法和单副本热缓存等技术手段,MiniMax在优化性能的同时显著降低了建设成本,计算资源用量降低40%,热数据存储用量降低50%,为未来业务的高速发展和技术演进奠定了坚实基础。
354 1
MiniMax GenAI 可观测性分析 :基于阿里云 SelectDB 构建 PB 级别日志系统
|
8月前
|
SQL 存储 自然语言处理
让跨 project 联查更轻松,SLS StoreView 查询和分析实践
让跨 project 联查更轻松,SLS StoreView 查询和分析实践
166 1
|
9月前
|
SQL 分布式计算 Serverless
基于阿里云 EMR Serverless Spark 版快速搭建OSS日志分析应用
基于阿里云 EMR Serverless Spark 版快速搭建OSS日志分析应用
232 0
下一篇