m基于Qlearning强化学习工具箱的网格地图路径规划和避障matlab仿真

简介: MATLAB 2022a中实现了Q-Learning算法的仿真,展示了一种在动态环境中进行路线规划和避障的策略。Q-Learning是强化学习的无模型方法,通过学习动作价值函数Q(s,a)来优化智能体的行为。在路线问题中,状态表示智能体位置,动作包括移动方向。通过正负奖励机制,智能体学会避开障碍物并趋向目标。MATLAB代码创建了Q表,设置了学习率和ε-贪心策略,并训练智能体直至达到特定平均奖励阈值。

1.算法仿真效果
matlab2022a仿真结果如下:

1.jpeg
2.jpeg
3.jpeg
4.jpeg

2.算法涉及理论知识概要
Q-Learning是强化学习中的一种重要算法,它属于无模型(model-free)学习方法,能够使智能体在未知环境中学习最优策略,无需环境的具体模型。将Q-Learning应用于路线规划和避障策略中,智能体(如机器人)能够在动态变化的环境中,自主地探索并找到从起点到终点的最安全路径,同时避开障碍物。

 Q-Learning的核心在于学习一个动作价值函数Q(s,a),该函数表示在状态s下采取动作a后,预期获得的累积奖励。智能体的目标是最大化长期奖励,通过不断更新Q值,最终学会在任何状态下采取最佳行动的策略。 

image.png

在路线规划和避障问题中,状态s可以定义为智能体的位置坐标或环境的特征描述,动作a则可以是移动的方向(上、下、左、右等)。环境中的障碍物会给予负奖励,促使智能体避开;而接近目标位置的动作则给予正奖励,鼓励智能体向目标前进。

 状态空间: 假设环境为一个二维网格,每个格子可以视为一个状态。若网格大小为N×M,则状态空间的大小为N×M。若考虑更精细的状态描述(如距离障碍物的距离),状态空间会相应增大。 动作空间: 常见的动作集包括上下左右四个基本方向,动作空间大小为4。在更复杂的场景中,可以加入斜向移动,使动作空间扩大到8。 

为了在Q-Learning中融入避障策略,可以通过调整奖励机制实现。具体而言:

 正奖励: 当智能体朝向目标移动时给予正奖励,距离目标越近,奖励越大。 负奖励: 智能体撞上障碍物或进入无法通行区域时给予负奖励,惩罚力度应足够大以确保智能体学会避免这些状态。 

探索奖励: 可以引入探索奖励鼓励智能体探索未知区域,但要平衡探索与利用(Exploitation vs. Exploration)。
基于Q-Learning的路线规划和避障策略,通过不断迭代学习,智能体能够在复杂多变的环境中自主发现安全高效的路径。该方法不仅适用于静态环境,也能通过调整策略适应动态变化的场景,展现了强化学习在自主导航领域的广泛应用前景。

3.MATLAB核心程序

% 首先,根据环境的观察和动作规范创建Q表 Qtab = rlTable(getObservationInfo(Envir),getActionInfo(Envir)); % 创建表型表示并设置学习率为0.5 Reptab = rlRepresentation(Qtab); Reptab.Options.LearnRate = 0.5; % 接着,使用此表型表示创建Q学习智能体,并配置epsilon贪心策略 agentOpts = rlQAgentOptions; agentOpts.EpsilonGreedyExploration.Epsilon = 0.04; qAgent = rlQAgent(Reptab,agentOpts); %训练Q学习智能体 trainOpts = rlTrainingOptions; trainOpts.MaxStepsPerEpisode = 100;% 每个episode最大步数 trainOpts.MaxEpisodes = 400;% 总训练episode数 trainOpts.StopTrainingCriteria = "AverageReward";% 停止训练的条件 trainOpts.StopTrainingValue = 40;% 达到的平均奖励阈值 trainOpts.ScoreAveragingWindowLength = 30;% 平均奖励的窗口长度 % 开始训练智能体 trainingStats = train(qAgent,Envir,trainOpts); 
相关文章
|
30天前
|
5G
基于IEEE 802.11a标准的物理层MATLAB仿真
基于IEEE 802.11a标准的物理层MATLAB仿真
139 0
|
1月前
|
算法
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
|
1月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
1月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
24天前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
143 0
|
24天前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
|
24天前
|
算法 机器人 计算机视觉
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
|
24天前
|
新能源 Java Go
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
|
24天前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
121 8
|
24天前
|
机器学习/深度学习 编解码 算法
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)

热门文章

最新文章

下一篇