Insert API执行流程源码解析
milvus版本:v2.3.2
Insert这个API写入数据,流程较长,是milvus的核心API之一,本文介绍大致的写入流程。
整体架构:

Insert 的数据流向:

1.客户端sdk发出Insert API请求。
import numpy as np from pymilvus import ( connections, FieldSchema, CollectionSchema, DataType, Collection, ) num_entities, dim = 2000, 8 print("start connecting to Milvus") connections.connect("default", host="192.168.230.71", port="19530") fields = [ FieldSchema(name="pk", dtype=DataType.VARCHAR, is_primary=True, auto_id=False, max_length=100), FieldSchema(name="random", dtype=DataType.DOUBLE), FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim) ] schema = CollectionSchema(fields, "hello_milvus is the simplest demo to introduce the APIs") print("Create collection `hello_milvus`") hello_milvus = Collection("hello_milvus", schema, consistency_level="Strong",shards_num=2) print("Start inserting entities") rng = np.random.default_rng(seed=19530) entities = [ # provide the pk field because `auto_id` is set to False [str(i) for i in range(num_entities)], rng.random(num_entities).tolist(), # field random, only supports list rng.random((num_entities, dim)), # field embeddings, supports numpy.ndarray and list ] insert_result = hello_milvus.insert(entities) hello_milvus.flush() 客户端SDK向proxy发送一个Insert API请求,向数据库写入数据。
这个例子向数据库写入2000条数据,每条数据是一个8维向量。

2.客户端接受API请求,将request封装为insertTask,并压入dmQueue队列。
注意这里是dmQueue。DDL类型的是ddQueue。
代码路径:internal\proxy\impl.go
// Insert insert records into collection. func (node *Proxy) Insert(ctx context.Context, request *milvuspb.InsertRequest) (*milvuspb.MutationResult, error) { ...... // request封装为task it := &insertTask{ ctx: ctx, Condition: NewTaskCondition(ctx), insertMsg: &msgstream.InsertMsg{ BaseMsg: msgstream.BaseMsg{ HashValues: request.HashKeys, }, InsertRequest: msgpb.InsertRequest{ Base: commonpbutil.NewMsgBase( commonpbutil.WithMsgType(commonpb.MsgType_Insert), commonpbutil.WithMsgID(0), commonpbutil.WithSourceID(paramtable.GetNodeID()), ), DbName: request.GetDbName(), CollectionName: request.CollectionName, PartitionName: request.PartitionName, FieldsData: request.FieldsData, NumRows: uint64(request.NumRows), Version: msgpb.InsertDataVersion_ColumnBased, }, }, idAllocator: node.rowIDAllocator, segIDAssigner: node.segAssigner, chMgr: node.chMgr, chTicker: node.chTicker, } ...... // 将task压入dmQueue队列 if err := node.sched.dmQueue.Enqueue(it); err != nil { ...... } ...... // 等待任务执行完 if err := it.WaitToFinish(); err != nil { ...... } ...... } InsertRequest结构:
type InsertRequest struct { Base *commonpb.MsgBase DbName string CollectionName string PartitionName string FieldsData []*schemapb.FieldData HashKeys []uint32 NumRows uint32 XXX_NoUnkeyedLiteral struct{ } XXX_unrecognized []byte XXX_sizecache int32 } type FieldData struct { Type DataType FieldName string // Types that are valid to be assigned to Field: // // *FieldData_Scalars // *FieldData_Vectors Field isFieldData_Field FieldId int64 IsDynamic bool XXX_NoUnkeyedLiteral struct{ } XXX_unrecognized []byte XXX_sizecache int32 } type isFieldData_Field interface { isFieldData_Field() } type FieldData_Scalars struct { Scalars *ScalarField } type FieldData_Vectors struct { Vectors *VectorField } 客户端通过grpc发送数据,FieldData.Field存储接受的数据。
isFieldData_Field是一个接口,有2个实现:FieldData_Scalars和FieldData_Vectors。
真正存储数据的就是这2个实现。
3.执行insertTask的3个方法PreExecute、Execute、PostExecute。
PreExecute()一般为参数校验等工作。
Execute()一般为真正执行逻辑。
PostExecute()执行完后的逻辑,什么都不做,返回nil。
代码路径:internal\proxy\task_insert.go
func (it *insertTask) Execute(ctx context.Context) error { ...... collectionName := it.insertMsg.CollectionName // 根据collectionName得到collectionID collID, err := globalMetaCache.GetCollectionID(it.ctx, it.insertMsg.GetDbName(), collectionName) log := log.Ctx(ctx) if err != nil { ...... } it.insertMsg.CollectionID = collID getCacheDur := tr.RecordSpan() // 得到stream,类型为mqMsgStream stream, err := it.chMgr.getOrCreateDmlStream(collID) if err != nil { return err } getMsgStreamDur := tr.RecordSpan() // by-dev-rootcoord-dml_0_445811557825249939v0 // by-dev-rootcoord-dml_1_445811557825249939v1 // 如果shardNum=2,则获取2个虚拟channel channelNames, err := it.chMgr.getVChannels(collID) if err != nil { ...... } ...... // assign segmentID for insert data and repack data by segmentID // msgPck包含segmentID var msgPack *msgstream.MsgPack if it.partitionKeys == nil { // 分配segmentID // 重新打包为2个msgstream.TsMsg,分别发送给2个虚拟通道 msgPack, err = repackInsertData(it.TraceCtx(), channelNames, it.insertMsg, it.result, it.idAllocator, it.segIDAssigner) } else { msgPack, err = repackInsertDataWithPartitionKey(it.TraceCtx(), channelNames, it.partitionKeys, it.insertMsg, it.result, it.idAllocator, it.segIDAssigner) } if err != nil { ...... } ...... // 生产数据,将数据写入mq err = stream.Produce(msgPack) if err != nil { ...... } ...... } 总结:
1.Insert由proxy向mq(pulsar)写入数据。通过虚拟channel写入。
2.在pulsar创建topic,向topic写入数据。