Python基础 之 Python3 XML 解析 6

简介: Python3 XML 解析

Python基础 之 Python3 XML 解析 6

Python3 XML 解析

Python3 JSON 数据解析

JSON (JavaScript Object Notation) 是一种轻量级的数据交换格式。

Python3 中可以使用 json 模块来对 JSON 数据进行编解码,它包含了两个函数:

json.dumps(): 对数据进行编码。
json.loads(): 对数据进行解码。

在 json 的编解码过程中,Python 的原始类型与 json 类型会相互转换,具体的转化对照如下:

Python 编码为 JSON 类型转换对应表:
Python JSON
dict object
list, tuple array
str string
int, float, int- & float-derived Enums number
True true
False false
None null
JSON 解码为 Python 类型转换对应表:
JSON Python
object dict
array list
string str
number (int) int
number (real) float
true True
false False
null None
json.dumps 与 json.loads 实例
以下实例演示了 Python 数据结构转换为JSON:

实例(Python 3.0+)

!/usr/bin/python3

import json

Python 字典类型转换为 JSON 对象

data = {
'no' : 1,
'name' : 'baidu',
'url' : 'http://www.baidu.com'
}

json_str = json.dumps(data)
print ("Python 原始数据:", repr(data))
print ("JSON 对象:", json_str)

执行以上代码输出结果为:

Python 原始数据: {'url': 'http://www.baidu.com', 'no': 1, 'name': 'baidu'}
JSON 对象: {"url": "http://www.baidu.com", "no": 1, "name": "baidu"}

通过输出的结果可以看出,简单类型通过编码后跟其原始的repr()输出结果非常相似。

目录
相关文章
|
27天前
|
XML JSON 数据处理
超越JSON:Python结构化数据处理模块全解析
本文深入解析Python中12个核心数据处理模块,涵盖csv、pandas、pickle、shelve、struct、configparser、xml、numpy、array、sqlite3和msgpack,覆盖表格处理、序列化、配置管理、科学计算等六大场景,结合真实案例与决策树,助你高效应对各类数据挑战。(238字)
138 0
|
1月前
|
XML 数据采集 API
用Lxml高效解析XML格式数据:以天气API为例
免费Python教程:实战解析中国天气网XML数据,详解Lxml库高效解析技巧、XPath用法、流式处理大文件及IP封禁应对策略,助你构建稳定数据采集系统。
150 0
|
1月前
|
数据采集 存储 JavaScript
解析Python爬虫中的Cookies和Session管理
Cookies与Session是Python爬虫中实现状态保持的核心。Cookies由服务器发送、客户端存储,用于标识用户;Session则通过唯一ID在服务端记录会话信息。二者协同实现登录模拟与数据持久化。
|
2月前
|
JSON 缓存 开发者
淘宝商品详情接口(item_get)企业级全解析:参数配置、签名机制与 Python 代码实战
本文详解淘宝开放平台taobao.item_get接口对接全流程,涵盖参数配置、MD5签名生成、Python企业级代码实现及高频问题排查,提供可落地的实战方案,助你高效稳定获取商品数据。
|
2月前
|
存储 大数据 Unix
Python生成器 vs 迭代器:从内存到代码的深度解析
在Python中,处理大数据或无限序列时,迭代器与生成器可避免内存溢出。迭代器通过`__iter__`和`__next__`手动实现,控制灵活;生成器用`yield`自动实现,代码简洁、内存高效。生成器适合大文件读取、惰性计算等场景,是性能优化的关键工具。
221 2
|
2月前
|
机器学习/深度学习 文字识别 Java
Python实现PDF图片OCR识别:从原理到实战的全流程解析
本文详解2025年Python实现扫描PDF文本提取的四大OCR方案(Tesseract、EasyOCR、PaddleOCR、OCRmyPDF),涵盖环境配置、图像预处理、核心识别与性能优化,结合财务票据、古籍数字化等实战场景,助力高效构建自动化文档处理系统。
586 0
|
2月前
|
机器学习/深度学习 JSON Java
Java调用Python的5种实用方案:从简单到进阶的全场景解析
在机器学习与大数据融合背景下,Java与Python协同开发成为企业常见需求。本文通过真实案例解析5种主流调用方案,涵盖脚本调用到微服务架构,助力开发者根据业务场景选择最优方案,提升开发效率与系统性能。
642 0
机器学习/深度学习 算法 自动驾驶
424 0
|
2月前
|
算法 安全 数据安全/隐私保护
Python随机数函数全解析:5个核心工具的实战指南
Python的random模块不仅包含基础的随机数生成函数,还提供了如randint()、choice()、shuffle()和sample()等实用工具,适用于游戏开发、密码学、统计模拟等多个领域。本文深入解析这些函数的用法、底层原理及最佳实践,帮助开发者高效利用随机数,提升代码质量与安全性。
491 0
|
2月前
|
数据可视化 Linux iOS开发
Python脚本转EXE文件实战指南:从原理到操作全解析
本教程详解如何将Python脚本打包为EXE文件,涵盖PyInstaller、auto-py-to-exe和cx_Freeze三种工具,包含实战案例与常见问题解决方案,助你轻松发布独立运行的Python程序。
868 2
下一篇