Performance at Scale with
Amazon ElastiCache

July 2019

dWS
N



Customers are responsible for making their own independent assessment of the
information in this document. This document: (a) is for informational purposes only, (b)
represents current AWS product offerings and practices, which are subject to change
without notice, and (c) does not create any commitments or assurances from AWS and
its affiliates, suppliers or licensors. AWS products or services are provided “as is”
without warranties, representations, or conditions of any kind, whether express or
implied. The responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement
between AWS and its customers.

© 2019 Amazon Web Services, Inc. or its affiliates. All rights reserved.



Tak oo [81e3 (o) o IFTTT TSR 1

ElaStICACNE OVEIVIEW ...ttt e e e e e e enees 2
Alternatives t0 EIaStICACNE ..........iiiiiee e 2
MEMCACNEA VS. REAIS ... e e e 3
ElastiCache for MemMCACE ............ooiiiiiii e 5
Architecture with ElastiCache for Memcached..............ccccoiiiiiiii e 5
Selecting the Right Cache NOUE SiZe ..........ouvviiiiiiiiiiie e 9
SecCurity GroUPS AN VPC ...ttt e e e e e e e e e e e eaeeaaeeeeeans 10
Caching DesSIgN PatlerMS.........uuiii ittt e e s e eee e 12
HOW 10 APPIY CACRING ....cciiiiiiiiiee e 12
Consistent Hashing (Sharding) ........ooooo i 13
ClENT LIDIAIIES ...ttt e e e e e e e e 15
B LAZY ittt 16
A AV A (@ T T I 1] U T | o SO 18
e q 1= LA [0 T I T (U SS 20
The ThUuNdering HEI ........oeiiiiee e e e 21
Cache (AIMOSt) EVEIYtNING .......oviiiiiie e 22
ElastiCache fOr REIS ........cuuiiiii et 22
Architecture with ElastiCache for REdIS ..........c.ooviiiiiiiiiii e 23
Distributing Reads and WILES ..........uuiiiiiiieeii it e e e e e 25
MUIt-AZ With AULO-FAIIOVET ........eiiiiiiiieiee e 26
Sharding With REdIS ... e e e e e e e e e e e 27
Advanced Datasets With REdIS ........cooouiiiiiiiiiiiee e 31
Game LeaderbOArdS .........oooiiiiiiiii e 31
Recommendation ENQINES........cooiiiiiiiii e 31

Chat aNd MESSAGING ....coeeeiiiieiieei ettt e e e e e e e s et e e e e e e e e e e assannsbbeeeeeeeaaeeeaeaans 32



Client Libraries and Consistent HaShing ..........cccooiiiiiiiiiiiiiiiece e 33
MONIEONNG AN TUNING . .ceeeiiiiieii et e et e e e e et et e e s anb e e e e e s aannreeeeeens 34
Monitoring Cache EffICIENCY .....ccoooiiiiiiiii e 34
Watching for HOt SPOLS .......cooiieee e e 36
Memcached Memory OPtMIZAtION ............ccooiiiiiiiiiiiiiee e 37
Redis Memory OptimiZatioN ........cc.uuuuiiiiiiee e e e e e e e e e e e s nreeeeeeas 38
Redis BACKUP @Nd RESIOIE ......ccoiiiiiiiie ittt 38
Cluster Scaling and AULO DISCOVEIY.......cciuuiiieiiiiiiee ettt ee e 39
AULO SCaling CIUSTEN NOUES ... 39
Auto Discovery of Memcached NOUES ........ooooiiiiiiiiiiiie s 39
Cluster Reconfiguration Events from Amazon SNS..........cccciiiiiiiiiii e 41
(©d0] o {03 011 o] o HU PSP O PP PP PUUPPOPPRPTTRS 43
CONDULOIS ...ttt e e e e anree e 43
FUIMNEE REATING . ... ittt e bt e e e s et e e e e e e aabaeee e 43

DOCUMENT ROVISIONS .. et e e et 43



In-memory caching improves application performance by storing frequently accessed
data items in memory, so that they can be retrieved without access to the primary data
store. Properly leveraging caching can result in an application that not only performs
better, but also costs less at scale. Amazon ElastiCache is a managed service that
reduces the administrative burden of deploying an in-memory cache in the cloud.

Beyond caching, an in-memory data layer also enables advanced use cases, such as
analytics and recommendation engines. This whitepaper lays out common ElastiCache
design patterns, performance tuning tips, and important operational considerations to
get the most out of an in-memory layer.



Amazon Web Services Performance at Scale with Amazon ElastiCache

An effective caching strategy is perhaps the single biggest factor in creating an app that
performs well at scale. A brief look at the largest web, gaming, and mobile apps reveals
that all apps at significant scale have a considerable investment in caching. Despite
this, many developers fail to exploit caching to its full potential. This oversight can result
in running larger database and application instances than needed. Not only does this
approach decrease performance and add cost, but also it limits your ability to scale.

The in-memory caching provided by Amazon ElastiCache improves application
performance by storing critical pieces of data in memory for fast access. You can use
this caching to significantly improve latency and throughput for many read-heavy
application workloads, such as social networking, gaming, media sharing, and Q&A
portals. Cached information can include the results of database queries,
computationally intensive calculations, or even remote API calls. In addition, compute-
intensive workloads that manipulate datasets, such as recommendation engines and
high performance computing simulations, also benefit from an in-memory data layer. In
these applications, very large datasets must be accessed in real time across clusters of
machines that can span hundreds of nodes. Manipulating this data in a disk-based store
would be a significant bottleneck for these applications.

Amazon ElastiCache is a web service that makes it easy to deploy, operate, and scale
an in-memory cache in the cloud. Amazon ElastiCache manages the work involved in
setting up an in-memory service, from provisioning the AWS resources you request to
installing the software. Using Amazon ElastiCache, you can add an in-memory caching
layer to your application in a matter of minutes, with a few API calls. Amazon
ElastiCache integrates with other AWS services such as Amazon Elastic Compute
Cloud (Amazon EC2) and Amazon Relational Database Service (Amazon RDS), as well
as deployment management solutions such as AWS CloudFormation, AWS Elastic
Beanstalk, and AWS OpsWorks.

In this whitepaper, we'll walk through best practices for working with ElastiCache. We'll
demonstrate common in-memory data design patterns, compare the two open source
engines that ElastiCache supports, and show how ElastiCache fits into real-world
application architectures such as web apps and online games. By the end of this paper,
you should have a clear grasp of which caching strategies apply to your use case, and
how you can use ElastiCache to deploy an in-memory caching layer for your app.

dWs

Page 1



Amazon Web Services Performance at Scale with Amazon ElastiCache

The Amazon ElastiCache architecture is based on the concept of deploying one or more
cache clusters for your application. After your cache cluster is up and running, the
service automates common administrative tasks, such as resource provisioning, failure
detection and recovery, and software patching. Amazon ElastiCache provides detailed
monitoring metrics associated with your cache nodes, enabling you to diagnose and
react to issues very quickly. For example, you can set up thresholds and receive alarms
if one of your cache nodes is overloaded with requests.

ElastiCache works with both the Redis and Memcached engines. You can launch an
ElastiCache cluster by following the steps in the appropriate User Guide:

e Getting Started with Amazon ElastiCache for Redis?

e Getting Started with Amazon ElastiCache for Memcached?

It's important to understand that Amazon ElastiCache is not coupled to your database
tier. As far as Amazon ElastiCache nodes are concerned, your application is just setting
and getting keys in a slab of memory. That being the case, you can use Amazon
ElastiCache with relational databases such as MySQL or Microsoft SQL Server; with
NoSQL databases such as Amazon DynamoDB or MongoDB; or with no database tier
at all, which is common for distributed computing applications. Amazon ElastiCache
gives you the flexibility to deploy one, two, or more different cache clusters with your
application, which you can use for differing types of datasets.

In addition to using ElastiCache, you can cache data in AWS in other ways, each of
which has its own pros and cons. Let's briefly review some of the alternatives:

e Amazon CloudFront content delivery network (CDN)—this approach is used
to cache webpages, image assets, videos, and other static data at the edge,
as close to end users as possible. In addition to using CloudFront with static
assets, you can also place CloudFront in front of dynamic content, such as
web apps. The important caveat here is that CloudFront only caches
rendered page output. In web apps, games, and mobile apps, it's very
common to have thousands of fragments of data, which are reused in
multiple sections of the app. CloudFront is a valuable component of scaling a
website, but it does notobviate the need for application caching.

dWs

Page 2


https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/GettingStarted_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/GettingStarted_html

Amazon Web Services Performance at Scale with Amazon ElastiCache

Amazon RDS Read Replicas—some database engines, such as MySQL,
supportthe ability to attach asynchronous read replicas. Although useful, this
ability is limited to providing data in a duplicate format of the primary
database. You cannot cache calculations, aggregates, or arbitrary custom
keys in a replica. Also, read replicas are not as fast as in-memory caches.
Read replicas are more interesting for distributing data to remote sites or

apps.

On-host caching—a simplistic approach to caching is to store data on each
Amazon EC2 application instance, so that it's local to the server for fast
lookup. Don't dothis. First, you get no efficiency from your cache in this
case. As application instances scale up, they start with an empty cache,
meaning they end up hammering the data tier. Second, cache invalidation
becomes a nightmare. How are you going to reliably signal 10 or 100
separate EC2 instances to delete a given cache key? Finally, you rule out
interesting use cases for in-memory caches, such as sharing data at high
speed across a fleet of instances.

Let's turn our attention back to ElastiCache, and how it fits into your application.

Amazon ElastiCache currently supports two different in-memory key-value engines. You
can choose the engine you prefer when launching an ElastiCache cache cluster:

Memcached—a widely adopted in-memory key store, and historically the gold
standard of web caching. ElastiCache is protocol-compliant with Memcached, so
popular tools that you use today with existing Memcached environments will
work seamlessly with the service. Memcached is also multithreaded, meaning it
makes good use of larger Amazon EC2 instance sizes with multiple cores.

Redis—an increasingly popular open-source key-value store that supports more
advanced data structures such as sorted sets, hashes, and lists. Unlike
Memcached, Redis has disk persistence built in, meaning that you can use it for
long-lived data. Redis also supports replication, which can be used to achieve
Multi-AZ redundancy, similar to Amazon RDS.

Although both Memcached and Redis appear similar on the surface, in that they are
both in-memory key stores, they are quite different in practice. Because of the
replication and persistence features of Redis, ElastiCache manages Redis more as a

dWs

Page 3



Amazon Web Services Performance at Scale with Amazon ElastiCache

relational database. Redis ElastiCache clusters are managed as stateful entities that
include failover, similar to how Amazon RDS manages database failover.

Conversely, because Memcached is designed as a pure caching solution with no
persistence, ElastiCache manages Memcached nodes as a pool that can grow and
shrink, similar to an Amazon EC2 Auto Scaling group. Individual nodes are expendable,
and ElastiCache provides additional capabilities here such as automatic node
replacement and Auto Discovery.

When deciding between Memcached and Redis, here are a few questions to consider:

dWs

Is object caching your primary goal, for example to offload your database? If
so, use Memcached.

Are you interested in as simple a caching model as possible? If so, use
Memcached.

Are you planning on running large cache nodes, and require multithreaded
performance with utilization of multiple cores? If so, use Memcached.

Do you want the ability to scale your cache horizontally as you grow? If so, use
Memcached.

Does your app need to atomically increment or decrement counters? If so, use
either Redis or Memcached.

Are you looking for more advanced data types, such as lists, hashes, bit arrays,
HyperLogLogs, and sets? If so, use Redis.

Does sorting and ranking datasets in memory help you, such as with
leaderboards? If so, use Redis.

Are publish and subscribe (pub/sub) capabilities of use to your application? If so,
use Redis.

Is persistence of your key store important? If so, use Redis.

Do you want to run in multiple AWS Availability Zones (Multi-AZ) with failover? If
S0, use Redis.

Is geospatial support important to your applications? If so, use Redis.

Is encryption and compliance to standards, such as PCI DSS, HIPAA, and
FedRAMP, required for your business? If so, use Redis.

Page 4



Amazon Web Services Performance at Scale with Amazon ElastiCache

Although it's tempting to look at Redis as a more evolved Memcached due to its
advanced data types and atomic operations, Memcached has a longer track record
and the ability to leverage multiple CPU cores.

Because Memcached and Redis are so different in practice, we're going to address
them separately in most of this paper. We will focus on using Memcached as an in-
memory cache pool, and using Redis for advanced datasets, such as game
leaderboards and activity streams.

The primary goal of caching is typically to offload reads from your database or other
primary data source. In most apps, you have hot spots of data that are regularly
gueried, but only updated periodically. Think of the front page of a blog or news site, or
the top 100 leaderboard in an online game. In this type of case, your app can receive
dozens, hundreds, or even thousands of requests for the same data before it's updated
again.

Having your caching layer handle these queries has several advantages. First, it's
considerably cheaper to add an in-memory cache than to scale up to a larger database
cluster. Second, an in-memory cache is also easier to scale out, because it's easier to
distribute an in-memory cache horizontally than a relational database.

Last, a caching layer provides a request buffer in the event of a sudden spike in usage.
If your app or game ends up on the front page of Reddit or the App Store, it's not
unheard of to see a spike that is 10—100 times your normal application load. Even if you
auto-scale your application instances, a 10x request spike will likely make your
database very unhappy.

Let's focus on ElastiCache for Memcached first, because it is the best fit for a caching-
focused solution. We'll revisit Redis later in the paper, and weigh its advantages and
disadvantages.

Architecture with ElastiCache for Memcached

When you deploy an ElastiCache Memcached cluster, it sits in your application as a
separate tier alongside your database. As mentioned previously, Amazon ElastiCache
does not directly communicate with your database tier, or indeed have any particular
knowledge of your database. A simplified deployment for a web application looks similar
to the following diagram.

dWs

Page 5



Amazon Web Services Performance at Scale with Amazon ElastiCache

Auto Scaling
Group

S S N S A S S S S S S A A R S S A e e e s

In this architecture diagram, the Amazon EC2 application instances are in an Auto
Scaling group, located behind a load balancer using Elastic Load Balancing, which
distributes requests among the instances. As requests come into a given EC2 instance,
that EC2 instance is responsible for communicating with ElastiCache and the database
tier. For development purposes, you can begin with a single ElastiCache node to test
your application, and then scale to additional cluster nodes by modifying the
ElastiCache cluster. As you add additional cache nodes, the EC2 application instances
are able to distribute cache keys across multiple ElastiCache nodes. The most common
practice is to use client-side sharding to distribute keys across cache nodes, which we
will discuss later in this paper.

aws

S Page 6



Amazon Web Services Performance at Scale with Amazon ElastiCache

Auto Scaling
Group

\

ElastiCache Cluster

P

When you launch an ElastiCache cluster, you can choose the Availability Zones where
the cluster lives. For best performance, you should configure your cluster to use the
same Availability Zones as your application servers. To launch an ElastiCache cluster in
a specific Availability Zone, make sure to specify the Preferred Zone(s) option during
cache cluster creation. The Availability Zones that you specify will be where ElastiCache
will launch your cache nodes. We recommend that you select Spread Nodes Across
Zones, which tells ElastiCache to distribute cache nodes across these zones as evenly
as possible. This distribution will mitigate the impact of an Availability Zone disruption on
your ElastiCache nodes. The trade-off is that some of the requests from your application
to ElastiCache will go to a node in a different Availability Zone, meaning latency will be

aws

S Page 7



Amazon Web Services Performance at Scale with Amazon ElastiCache

slightly higher. For more details, see Creating a Cluster in the Amazon ElastiCache for
Memcached User Guide®.

As mentioned at the outset, ElastiCache can be coupled with a wide variety of
databases. Here is an example architecture that uses Amazon DynamoDB instead of
Amazon RDS and MySQL.:

proscscscscscscsescccssssccasssipgeass ~
| Region \
' |
] 1
| |
] ]
e, :
| (AZA 1
. :
. -
- o
P b
] | 1
po :
v I 1
b Auto Scaling | |
E | — Group | E
P 1| o
. 1] |
. 1] o
- |1 o
b 1l : :
H | : | ElastiCache Cluster | H
] | | |
'

P |
P b
] | ]
P :
P -
. -
| | DynamoDB | 1
: N e e e e e e / N e e e e e e / :
] ]
\ s

S

This combination of DynamoDB and ElastiCache is very popular with mobile and game
companies, because DynamoDB allows for higher write throughput at lower cost than
traditional relational databases. In addition, DynamoDB uses a key-value access pattern
similar to ElastiCache, which also simplifies the programming model. Instead of using
relational SQL for the primary database but then key-value patterns for the cache, both

dWs

) Page 8


https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clusters.Create_html

Amazon Web Services Performance at Scale with Amazon ElastiCache

the primary database and cache can be programmed similarly. In this architecture
pattern, DynamoDB remains the source of truth for data, but application reads are
offloaded to ElastiCache for a speed boost.

Selecting the Right Cache Node Size

ElastiCache supports a variety of cache node types. We recommend choosing a cache
node from the M5 or R5 families, because the newest node types support the latest-
generation CPUs and networking capabilities. These instance families can deliver up to
25 Gbps of aggregate network bandwidth with enhanced networking based on the
Elastic Network Adapter (ENA) and over 600 GiB of memory. The R5 node types
provide 5% more memory per vCPU and a 10% price per GiB improvement over R4
node types. In addition, R5 node types deliver a ~20% CPU performance improvement
over R4 node types.

If you don’t know how much capacity you need, we recommend starting with one
cache.mb5.large node. Use the ElastiCache metrics published to CloudWatch to monitor
memory usage, CPU utilization, and the cache hit rate. If your cluster does not have the
desired hit rate, or you notice that keys are being evicted too often, choose another
node type with more CPU and memory capacity. For production and large workloads,
the R5 nodes typically provide the best performance and memory cost value.

You can get an approximate estimate of the amount of cache memory you'll need by
multiplying the size of items you want to cache by the number of items you want to keep
cached at once. Unfortunately, calculating the size of your cached items can be trickier
than it sounds. You can arrive at a slight overestimate by serializing your cached items
and then counting characters. Here's an example that flattens a Ruby object to JSON,
counts the number of characters, and then multiplies by 2 because there are typically 2
bytes per character:

irb (main) :010:0> user = User.find(4)
irb(main) : 011:0> use/to_json.size * 2
=> 580

In addition to the size of your data, Memcached adds approximately 50—60 bytes of
internal bookkeeping data to each element. The cache key also consumes space, up to
250 characters at 2 bytes each. In this example, it's probably safest to overestimate a
little and guess 1-2 KB per cached object. Keep in mind that this approach is just for

dWs

Page 9



Amazon Web Services Performance at Scale with Amazon ElastiCache

illustration purposes. Your cached objects can be much larger if you are caching
rendered page fragments or if you use a serialization library that expands strings.

Because Amazon ElastiCache is a pay-as-you-go service, make your best guess at the
node instance size, and then adjust after getting some real-world data. Make sure that
your application is set up for consistent hashing, which will enable you to add additional
Memcached nodes to scale your in-memory layer horizontally. For additional tips, see
Choosing Your Node Size in the Amazon ElastiCache for Memcached User Guide.*

Security Groups and VPC

Like other AWS services, ElastiCache supports security groups. You can use security
groups to define rules that limit access to your instances based on IP address and port.
ElastiCache supports both subnet security groups in Amazon Virtual Private Cloud
(Amazon VPC) and classic Amazon EC2 security groups. We strongly recommend that
you deploy ElastiCache and your application in Amazon VPC, unless you have a
specific need otherwise (such as for an existing application). Amazon VPC offers
several advantages, including fine-grained access rules and control over private IP
addressing. For an overview of how ElastiCache integrates with Amazon VPC, see
Understanding ElastiCache and Amazon VPCs in the Amazon ElastiCache for
Memcached User Guide.®

When launching your ElastiCache cluster in VPC, launch it in a private subnet with no
public connectivity for best security. Memcached does not have any serious
authentication or encryption capabilities, but Redis does support encryption. Following
is a simplified version of our previous architecture diagram that includes an example
VPC subnet design.

- -

Region

CACHE

ElastiCache Node

]
]
1
1
1
]
]
]
]
]
1
1
1
1
1
]
\

| T ———

To keep your cache nodes as secure as possible, only allow access to your cache
cluster from your application tier, as shown preceding. ElastiCache does not need
connectivity to or from your database tier, because your database does not directly

dWs

Page 10


https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/nodes-select-size_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/VPCs.EC_html

Amazon Web Services Performance at Scale with Amazon ElastiCache

interact with ElastiCache. Only application instances that are making calls to your cache
cluster need connectivity to it.

The way ElastiCache manages connectivity in Amazon VPC is through standard VPC
subnets and security groups. To securely launch an ElastiCache cluster in Amazon
VPC, follow these steps:

1.

Create VPC private subnet(s) that will house your ElastiCache cluster, in the
same VPC as the rest of your application. A given VPC subnet maps to a single
Avalilability Zone. Given this mapping, create a private VPC subnet for each
Availability Zone where you have application instances. Alternatively, you can
reuse another private VPC subnet that you already have. For more information,
refer to VPCs and Subnets in the Amazon Virtual Private Cloud User Guide.®

Create a VPC security group for your new cache cluster. Make sure it is also in
the same VPC as the preceding subnet. For more details, see Security Groups
for Your VPC in the Amazon Virtual Private Cloud User Guide.’

Create a single access rule for this security group, allowing inbound access on
port 11211 for Memcached or on port 6379 for Redis.

Create an ElastiCache subnet group that contains the VPC private subnets that
you created in step 1. This subnet group is how ElastiCache knows which VPC
subnets to use when launching the cluster. For instructions, see Creating a

Cache Subnet Group in the Amazon ElastiCache for Memcached User Guide.?

When you launch your ElastiCache cluster, make sure to place it in the correct
VPC, and choose the correct ElastiCache subnet group. For instructions, see
Creating a Cluster in the Amazon ElastiCache for Memcached User Guide.®

A correct VPC security group for your cache cluster should look like the following.
Notice the single inbound rule allowing access to the cluster from the application tier:

dWs

Page 11


http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Subnets_html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups_html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/VPCs.CreatingSubnetGroup_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/VPCs.CreatingSubnetGroup_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clusters.Create_html

Amazon Web Services

VPC Dashboard

Create Security Group Delete Security Group
4

Performance at Scale with Amazon ElastiCache

LR - I 2
Filter by VPC:
| vpc-42db2827 (10.20.0.1 +] Filter All security groups v Q Search Security Groups. X
Virtual Private < 1 to 3 of 3 Security Groups
Cloud Name tag «  Group ID ~ Group Name v VPC v
Your VPCs
application tier sg-3b18adSe application tier vpc-42db2827 (10.20.0.0/16)...
REEGR public subnet sg-8d1eabes default vpc-42db2827 (10.20.0.0/16)...
Route Tables @ elasticache cluster sg-e418ad81 elasticache cluster  vpc-42db2827 (10.20.0.0/16)...
Internet Gateways
Y sg-e418ad81 | elasticache cluster |l =l |
DHCP Options Sets
Elastic IPs Summary Inbound Rules Outbound Rules Tags
Peering Connections m
. Type Protocol Port Range Source
Security
Custom TCP Rule TCP (6) 11211 sg-3b18ad5e ( application tier )
Network ACLs

To test connectivity from an application instance to your cache cluster in VPC, you can
use netcat, a Linux command-line utility. Choose one of your cache cluster nodes, and
attempt to connect to the node on either port 11211 (Memcached) or port 6379 (Redis):

S nc -z -wb my-cache-2b.z2vg55.001.

11211

S echo $?
0

usw2.cache.amazonaws.com

If the connection is successful, netcat will exit with status 0. If netcat appears to hang, or
exits with a nonzero status, check your VPC security group and subnet settings.

Caching Design Patterns

With a ElastiCache cluster deployed, let's now dive into how to best apply caching in

your application.

How to Apply Caching

With a ElastiCache cluster deployed, let's now dive into how to best apply caching in

your application.

aws

S —

Page 12



Amazon Web Services Performance at Scale with Amazon ElastiCache

e |[sitsafe to use a cached value? The same piece of data can have different
consistency requirements in different contexts. For example, during online
checkout, you need the authoritative price of an item, so caching might not be
appropriate. On other pages, however, the price might be a few minutes out of
date without a negative impact on users.

e Is caching effective for that data? Some applications generate access patterns
that are not suitable for caching—for example, sweeping through the key space
of a large dataset that is changing frequently. In this case, keeping the cache up-
to-date could offset any advantage caching could offer.

e |Is the data structured well for caching? Simply caching a database record can
often be enough to offer significant performance advantages. However, other
times, data is best cached in a format that combines multiple records together.
Because caches are simple key-value stores, you might also need to cache a
data record in multiple different formats, so you can access it by different
attributes in the record.

You don’t need to make all of these decisions up front. As you expand your usage of
caching, keep these guidelines in mind when deciding whether to cache a given piece
of data.

Consistent Hashing (Sharding)

In order to make use of multiple ElastiCache nodes, you need a way to efficiently
spread your cache keys across your cache nodes. The naive approach to distributing
cache keys, often found in blogs, looks like this:

cache node list = [

"my-cache-2a.z2vg55.0001.usw2.cache.amazonaws.com:11211",
"my-cache-2a.z2vg55.0002.usw2.cache.amazonaws.com:11211"

This approach applies a hash function (such as CRC32) to the key to add some
randomization, and then uses a math modulo of the number of cache nodes to distribute
the key to a random node in the list. This approach is easy to understand, and most
importantly for any key hashing scheme it is deterministic in that the same cache key
always maps to the same cache node.

dWs

Page 13



Amazon Web Services Performance at Scale with Amazon ElastiCache

Unfortunately, this particular approach suffers from a fatal flaw due to the way that
modulo works. As the number of cache nodes scales up, most hash keys will get
remapped to new nodes with empty caches, as a side effect of using modulo. You can
calculate the number of keys that would be remapped to a new cache node by dividing
the old node count by the new node count. For example, scaling from 1 to 2 nodes
remaps half (2) of your cache keys; scaling from 3 to 4 nodes remaps three-quarters
(%) of your keys; and scaling from 9 to 10 nodes remaps 90 percent of your keys to
empty caches. Ouch.

This approach is bad for obvious reasons. Think of the scenario where you're scaling
rapidly due to a spike in demand. Just at the point when your application is getting
overwhelmed, you add an additional cache node to help alleviate the load. Instead you
effectively wipe 90 percent of your cache, causing a huge spike of requests to your
database. Your dashboard goes red and you start getting those alerts that nobody
wants to get.

Luckily, there is a well-understood solution to this dilemma, known as consistent
hashing. The theory behind consistent hashing is to create an internal hash ring with a
pre-allocated number of partitions that can hold hash keys. As cache nodes are added
and removed, they are slotted into positions on that ring. The following illustration, taken
from Benjamin Erb’s thesis on Current Programming for Scalable Web Architectures?©,
illustrates consistent hashing graphically.

The downside to consistent hashing is that there's quite a bit of math involved—at least,
it's more complicated than a simple modulo. Basically, you preallocate a set of random
integers, and assign cache nodes to those random integers. Then, rather than using
modulo, you find the closest integer in the ring for a given cache key, and use the cache

dWs

Page 14


http://berb.github.io/diploma-thesis/

Amazon Web Services Performance at Scale with Amazon ElastiCache

node associated with that integer. A concise yet complete explanation can be found in
the article Consistent Hashing*!, by Tom White.

Luckily, many modern client libraries include consistent hashing. Although you shouldn't
need to write your own consistent hashing solution from scratch, it's important that you
are aware of consistent hashing, so that you can ensure it's enabled in your client. For
many libraries, it's still not the default behavior, even when supported by the library.

Client Libraries

Mature Memcached client libraries exist for all popular programming languages. Any of
the following Memcached libraries will work with Amazon ElastiCache:

Language Memcached Library
Ruby Dalli*?, Dalli::ElastiCache?'?
Python Memcache Ring'*, django-elasticache'®, python-

memcached®®, pylibmc?’

Node.js node-memcached?!®

PHP ElastiCache Cluster Client!®, memcached?®®
Java ElastiCache Cluster Client?!, spymemcached?
C#/.NET

ElastiCache Cluster Client?3, Enyim Memcached?*

For Memcached with Java, .NET, or PHP, we recommend using ElastiCache Clients
with Auto Discovery, because it supports Auto Discovery of new ElastiCache nodes as
they are added to the cache cluster.?®> For Java, this library is a simple wrapper around
the popular spymemcached library that adds Auto Discovery support.?® For PHP, it is a
wrapper around the built-in Memcached PHP library. For .NET, it is a wrapper around
Enyim Memcached.

Auto Discovery only works for Memcached, not Redis. When ElastiCache repairs or
replaces a cache node, the Domain Name Service (DNS) name of the cache node will
remain the same, meaning your application doesn't need to use Auto Discovery to deal
with common failures. You only need Auto Discovery support if you dynamically scale

dWs

Page 15


http://www.tom-e-white.com/2007/11/consistent-hashing_html
https://github.com/petergoldstein/dalli
https://github.com/ktheory/dalli-elasticache
https://github.com/youknowone/ring
https://github.com/gusdan/django-elasticache
https://github.com/linsomniac/python-memcached
https://github.com/linsomniac/python-memcached
https://github.com/lericson/pylibmc
https://www.npmjs.com/package/memcached
https://github.com/awslabs/aws-elasticache-cluster-client-memcached-for-php
https://github.com/php-memcached-dev/php-memcached
https://github.com/awslabs/aws-elasticache-cluster-client-memcached-for-java
https://github.com/couchbase/spymemcached
https://github.com/awslabs/elasticache-cluster-config-net
https://github.com/enyim/EnyimMemcached
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clients_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clients_html
https://code.google.com/archive/p/spymemcached/

Amazon Web Services Performance at Scale with Amazon ElastiCache

the size of your cache cluster on the fly, while your application is running. Dynamic
scaling is only required if your application load fluctuates significantly. For more details,
see Automatically Identify Nodes in your Memcached Cluster in the Amazon
ElastiCache for Memcached User Guide.?’

As mentioned, you should choose a client library that includes native support for
consistent hashing. Many of the libraries in the preceding table support consistent
hashing, but we recommend that you check the documentation, because this support
can change over time. Also, you might need to enable consistent hashing by setting an
option in the client library.

In PHP, for example, you need to explicitly set
Memcached::OPT_LIBKETAMA_ COMPATIBLE to true to enable consistent hashing:

Scache nodes = array(
array ("my-cache-

2a.z2vg55.0001.usw2.cache.amazonaws.com’, 11211),
array ("my—-cache-

2a.z2vg55.0002.usw2.cache.amazonaws.com’, 11211)
) ;

Smemcached = new Memcached () ;

$memcached—>set0ption(Memcached::OPT_LIBKETAMA_COMPATIBLE,
true) ;

Smemcached->addServers (Scache nodes) ;

This code snippet tells PHP to use consistent hashing by using libketama.?® Otherwise,
the default in PHP is to use modulo, which suffers from the drawbacks outlined
preceding.

Next, let's look at some common and effective caching strategies. If you've done a good
amount of caching before, some of this might be old hat.

Be Lazy

Lazy caching, also called lazy population or cache-aside, is the most prevalent form of
caching. Laziness should serve as the foundation of any good caching strategy. The

dWs

Page 16


https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/AutoDiscovery_html
https://github.com/RJ/ketama

Amazon Web Services Performance at Scale with Amazon ElastiCache

basic idea is to populate the cache only when an object is actually requested by the
application. The overall application flow goes like this:

1.

Your app receives a query for data, for example the top 10 most recent news
stories.

Your app checks the cache to see if the object is in cache.
If so (a cache hit), the cached object is returned, and the call flow ends.

If not (a cache miss), then the database is queried for the object. The cache is
populated, and the object is returned.

This approach has several advantages over other methods:

The cache only contains objects that the application actually requests, which
helps keep the cache size manageable. New objects are only added to the
cache as needed. You can then manage your cache memory passively, by
simply letting Memcached automatically evict (delete) the least-accessed keys
as your cache fills up, which it does by default.

As new cache nodes come online, for example as your application scales up,
the lazy population method will automatically add objects to the new cache
nodes when the application first requests them.

Cache expiration, which we will cover in depth later, is easily handled by simply
deleting the cached object. A new object will be fetched from the database the
next time it is requested.

Lazy caching is widely understood, and many web and app frameworks include
support out of the box.

Here is an example of lazy caching in Python pseudocode:

dWs

Page 17



Amazon Web Services Performance at Scale with Amazon ElastiCache

# Python
def get user (user id):

# Check the cache

record = cache.get (user id)
if record is None:

# Run a DB query
record = db.query ("select * from users where id =

?",user id)

# Populate the cache
cache.set (user id, record)

return record

# App code

user = get user (17)

You can find libraries in many popular programming frameworks that encapsulate this
pattern. But regardless of programming language, the overall approach is the same.

Apply a lazy caching strategy anywhere in your application where you have data that is
going to be read often, but written infrequently. In a typical web or mobile app, for
example, a user's profile rarely changes, but is accessed throughout the app. A person
might only update his or her profile a few times a year, but the profile might be accessed
dozens or hundreds of times a day, depending on the user. Because Memcached will
automatically evict the less frequently used cache keys to free up memory, you can
apply lazy caching liberally with little downside.

Write On Through

In a write-through cache, the cache is updated in real time when the database is
updated. So, if a user updates his or her profile, the updated profile is also pushed into
the cache. You can think of this as being proactive to avoid unnecessary cache misses,
in the case that you have data that you absolutely know is going to be accessed. A

dWs

Page 18



Amazon Web Services Performance at Scale with Amazon ElastiCache

good example is any type of aggregate, such as a top 100 game leaderboard, or the top
10 most popular news stories, or even recommendations. Because this data is typically
updated by a specific piece of application or background job code, it's straightforward to
update the cache as well.

The write-through pattern is also easy to demonstrate in pseudocode:

# Python
def save user (user_ id, values) :
# Save to DB
record = db.query ("update users ... where id = 2",

user id, values)

# Push into cache
cache.set (user id,
record) return record

# App code

user = save_user (17, {"name": "Nate Dogg"})

This approach has certain advantages over lazy population:

e |t avoids cache misses, which can help the application perform better and feel
snappier.

e |t shifts any application delay to the user updating data, which maps better to
user expectations. By contrast, a series of cache misses can give a random user
the impression that your app is just slow.

e It simplifies cache expiration. The cache is always up-to-date.

However, write-through caching also has some disadvantages:

e The cache can be filled with unnecessary objects that aren't actually being
accessed. Not only could this consume extra memory, but unused items can
evict more useful items out of the cache.

dWs

Page 19



Amazon Web Services Performance at Scale with Amazon ElastiCache

e It canresultin a lot of cache churn if certain records are updated repeatedly.

e When (not if) cache nodes fail, those objects will no longer be in the cache. You
need some way to repopulate the cache of missing objects, for example by lazy
population.

As might be obvious, you can combine lazy caching with write-through caching to help
address these issues, because they are associated with opposite sides of the data flow.
Lazy caching catches cache misses on reads, and write-through caching populates data
on writes, so the two approaches complement each other. For this reason, it's often best
to think of lazy caching as a foundation that you can use throughout your app, and
write- through caching as a targeted optimization that you apply to specific situations.

Expiration Date

Cache expiration can become complex quickly. In our previous examples, we were only
operating on a single user record. In a real app, a given page or screen often caches a
whole bunch of different stuff at once—profile data, top news stories, recommendations,
comments, and so forth, all of which are being updated by different methods.

Unfortunately, there is no silver bullet for this problem, and cache expiration is a whole
arm of computer science. But there are a few simple strategies that you can use:

e Always apply a time to live (TTL) to all of your cache keys, except those you are
updating by write-through caching. You can use a long time, say hours or even
days. This approach catches application bugs, where you forget to update or
delete a given cache key when updating the underlying record. Eventually, the
cache key will auto-expire and get refreshed.

e For rapidly changing data such as comments, leaderboards, or activity streams,
rather than adding write-through caching or complex expiration logic, just set a
short TTL of a few seconds. If you have a database query that is getting
hammered in production, it's just a few lines of code to add a cache key with a 5
second TTL around the query. This code can be a wonderful Band-Aid to keep
your application up and running while you evaluate more elegant solutions.

e A newer pattern, Russian doll caching, has come out of work done by the Ruby
on Rails team. In this pattern, nested records are managed with their own cache
keys, and then the top-level resource is a collection of those cache keys. Say
that you have a news webpage that contains users, stories, and comments. In
this approach, each of those is its own cache key, and the page queries each of
those keys respectively.

aws
Page 20



Amazon Web Services Performance at Scale with Amazon ElastiCache

e When in doubt, just delete a cache key if you're not sure whether it's affected by
a given database update or not. Your lazy caching foundation will refresh the
key when needed. In the meantime, your database will be no worse off than it
was without Memcached.

For a good overview of cache expiration and Russian doll caching, see the blog post
The performance impact of "Russian doll" caching, in the Basecamp Signal vs Noise
blog.?°

The Thundering Herd

Also known as dog piling, the thundering herd effect is what happens when many
different application processes simultaneously request a cache key, get a cache miss,
and then each hits the same database query in parallel. The more expensive this query
is, the bigger impact it has on the database. If the query involved is a top 10 query that
requires ranking a large dataset, the impact can be a significant hit.

One problem with adding TTLs to all of your cache keys is that it can exacerbate this
problem. For example, let's say millions of people are following a popular user on your
site. That user hasn't updated his profile or published any new messages, yet his profile
cache still expires due to a TTL. Your database might suddenly be swamped with a
series of identical queries.

TTLs aside, this effect is also common when adding a new cache node, because the
new cache node's memory is empty. In both cases, the solution is to prewarm the cache
by following these steps:

1. Write a script that performs the same requests that your application will. If it's a
web app, this script can be a shell script that hits a set of URLSs.

2. If your app is set up for lazy caching, cache misses will result in cache keys
being populated, and the new cache node will fill up.

3. When you add new cache nodes, run your script before you attach the new node
to your application. Because your application needs to be reconfigured to add a
new node to the consistent hashing ring, insert this script as a step before
triggering the app reconfiguration.

4. If you anticipate adding and removing cache nodes on a regular basis,
prewarming can be automated by triggering the script to run whenever your app
receives a cluster reconfiguration event through Amazon Simple Notification
Service (Amazon SNS).

dWs

Page 21


https://signalvnoise.com/posts/3690-the-performance-impact-of-russian-doll-caching

Amazon Web Services Performance at Scale with Amazon ElastiCache

Finally, there is one last subtle side effect of using TTLs everywhere. If you use the
same TTL length (say 60 minutes) consistently, then many of your cache keys might
expire within the same time window, even after prewarming your cache. One strategy
that's easy to implement is to add some randomness to your TTL:

ttl = 3600 + (rand() * 120) /* +/- 2 minutes */

The good news is that only sites at large scale typically have to worry about this level of
scaling problem. It's good to be aware of, but it's also a good problem to have.

Cache (Almost) Everything

Finally, it might seem as if you should only cache your heavily hit database queries and
expensive calculations, but that other parts of your app might not benefit from caching.
In practice, in-memory caching is widely useful, because it is much faster to retrieve a
flat cache key from memory than to perform even the most highly optimized database
query or remote API call. Just keep in mind that cached data is stale data by definition,
meaning there may be cases where it's not appropriate, such as accessing an item’s
price during online checkout. You can monitor statistics, like cache misses, to determine
whether your cache is effective, which we will cover in Monitoring and Tuning later in
the paper.

So far, we've been talking about ElastiCache for Memcached as a passive component
in our application—a big slab of memory in the cloud. Choosing Redis as our engine
can unlock more interesting possibilities for our application, due to its higher-level data
structures such as lists, hashes, sets, and sorted sets.

Deploying Redis makes use of familiar concepts such as clusters and nodes. However,
Redis has a few important differences compared with Memcached:

¢ Redis data structures cannot be horizontally sharded. As a result, Redis
ElastiCache clusters are always a single node, rather than the multiple nodes we
saw with Memcached.

dWs

Page 22



Amazon Web Services Performance at Scale with Amazon ElastiCache

Redis supports replication, both for high availability and to separate read
workloads from write workloads. A given ElastiCache for Redis primary node
can have one or more replica nodes. A Redis primary node can handle both
reads and writes from the app. Redis replica nodes can only handle reads,
similar to Amazon RDS Read Replicas.

Because Redis supports replication, you can also fail over from the primary node
to a replica in the event of failure. You can configure ElastiCache for Redis to
automatically fail over by using the Multi-AZ feature.

Redis supports persistence, including backup and recovery. However, because
Redis replication is asynchronous, you cannot completely guard against data
loss in the event of a failure. We will go into detail on this topic in our discussion
of Multi-AZ.

Architecture with ElastiCache for Redis

As with Memcached, when you deploy an ElastiCache for Redis cluster, it is an
additional tier in your app. Unlike Memcached, ElastiCache clusters for Redis only
contain a single primary node. After you create the primary node, you can configure one
or more replica nodes and attach them to the primary Redis node. An ElastiCache for
Redis replication group consists of a primary and up to five read replicas. Redis
asynchronously replicates the data from the primary to the read replicas.

Because Redis supports persistence, it is technically possible to use Redis as your only
data store. In practice, customers find that a managed database such as Amazon
DynamoDB or Amazon RDS is a better fit for most use cases of long-term data storage.

dWs

Page 23



Amazon Web Services Performance at Scale with Amazon ElastiCache

’ - N
:Reglon '
] ]
i :
] ]
] ]
I o o e e e e e o o o o - ] D o o — — — — — — o— — - ]
! (AZA AZBY| i
] ]
l : |
H | Auto Scaling | |
' Group (I
] I ]
|
i '
| ]
o :
|
! l
[
P l
] I ]
- '
- | N
v | |
N | o
L Redis Replica I Redis Node o
] ]
: I -~/ | — o
. | N
: | | [
i ' §
! | ﬁ (| E |
N | L
;| I I '
[ RDS Master RDS Secondary 1
| | ]t
Do o N e - '
] ]
~ rd

ElastiCache for Redis has the concept of a primary endpoint, which is a DNS name that
always points to the current Redis primary node. If a failover event occurs, the DNS
entry will be updated to point to the new Redis primary node. To take advantage of this
functionality, make sure to configure your Redis client so that it uses the primary
endpoint DNS name to access your Redis cluster.

Keep in mind that the number of Redis replicas you attach will affect the performance of
the primary node. Resist the urge to spin up lots of replicas just for durability. One or
two replicas in a different Availability Zone are sufficient for availability. When scaling
read throughput, monitor your application's performance and add replicas as needed.
Be sure to monitor your ElastiCache cluster's performance as you add replica nodes.
For more details, see Monitoring and Tuning later in this paper.

dWs

S Page 24



Amazon Web Services Performance at Scale with Amazon ElastiCache

Distributing Reads and Writes

Using read replicas with Redis, you can separate your read and write workloads. This
separation lets you scale reads by adding additional replicas as your application grows.
In this pattern, you configure your application to send writes to the primary endpoint.

Then you read from one of the replicas, as shown in the following diagram. With this
approach, you can scale your read and write loads independently, so your primary node
only has to deal with writes.

Auto Scaling
Group

Writes \%ads

Redis Replica
|

Redis Replica
|

RDS Master

P —————————————————————————————— -
T

The main caveat to this approach is that reads can return data that is slightly out of date
compared to the primary node, because Redis replication is asynchronous. For

dWs

) Page 25



Amazon Web Services Performance at Scale with Amazon ElastiCache

example, if you have a global counter of "total games played" that is being continuously
incremented (a good fit for Redis), your master might show 51,782. However, a read
from a replica might only return 51,775. In many cases, this is just fine. But if the
counter is a basis for a crucial application state, such as the number of seconds
remaining to vote on the most popular pop singer, this approach won't work.

When deciding whether data can be read from a replica, here are a few questions to
consider:

e |s the value being used only for display purposes? If so, being slightly out of date
is probably okay.

e Is the value a cached value, for example a page fragment? If so, again being
slightly out of date is likely fine.

e Is the value being used on a screen where the user might have just edited it? In
this case, showing an old value might look like an application bug.

e |s the value being used for application logic? If so, using an old value can be
risky.

e Are multiple processes using the value simultaneously, such as a lock or queue?
If so, the value needs to be up-to-date and needs to be read from the primary
node.

In order to split reads and writes, you will need to create two separate Redis connection
handles in your application: one pointing to the primary node, and one pointing to the
read replica(s). Configure your application to write to the DNS primary endpoint, and
then read from the other Redis nodes.

Multi-AZ with Auto-Failover

During certain types of planned maintenance, or in the unlikely event of ElastiCache
node failure or Availability Zone failure, Amazon ElastiCache can be configured to
automatically detect the failure of the primary node, select a read replica, and promote it
to become the new primary. ElastiCache auto-failover will then update the DNS primary
endpoint with the IP address of the promoted read replica. If your application is writing
to the primary node endpoint as recommended earlier, no application change will be
needed.

Depending on how in-sync the promoted read replica is with the primary node, the
failover process can take several minutes. First, ElastiCache needs to detect the
failover, then suspend writes to the primary node, and finally complete the failover to the

dWs

Page 26



Amazon Web Services Performance at Scale with Amazon ElastiCache

replica. During this time, your application cannot write to the Redis ElastiCache cluster.
Architecting your application to limit the impact of these types of failover events will
ensure greater overall availability.

Unless you have a specific need otherwise, all production deployments should use
Multi-AZ with auto-failover. Keep in mind that Redis replication is asynchronous,
meaning if a failover occurs, the read replica that is selected might be slightly behind the
master.

Bottom line: Some data loss might occur if you have rapidly changing data. This effect is
currently a limitation of Redis replication itself. If you have crucial data that cannot be
lost (for example, transactional or purchase data), we recommend that you also store
that in a durable database such as Amazon DynamoDB or Amazon RDS.

Sharding with Redis

Redis has two categories of data structures: simple keys and counters, and
multidimensional sets, lists, and hashes. The bad news is the second category cannot
be sharded horizontally. But the good news is that simple keys and counters can.

In the simplest case, you can treat a single Redis node just like a single Memcached
node. Just like you might spin up multiple Memcached nodes, you can spin up multiple
Redis clusters, and each Redis cluster is responsible for part of the sharded dataset.

dWs

Page 27



Amazon

Web Services Performance at Scale with Amazon ElastiCache

’
]
]
]
]
]
|l o en onon on on o onoon on o on oo s o o o o o o - o o - -
i
: |
1|
P
| Auto Scaling
b Group
]
: |
! |
| I
]
| I
P
. .
| .
P ||
o Redis Cluster 1 - | | Redis Cluster 2
P M I
]
P 1
: | RDS Master ] | RDS Secondary
|
: e e e e e EE . S, S E— o } \ —————————————
LY

SRS RS ————————

In your application, you'll then need to configure the Redis client to shard between those

two clusters. Here is an example from the Jedis Sharded Java Client:

List<JedisShardInfo> shards = new
ArrayList<JedisShardInfo> () ;

shards.add (new JedisShardInfo ("redis-clusterl", 6379));

shards.add (new JedisShardInfo ("redis-cluster2", 6379)) ;

ShardedJedisPool pool = new ShardedJedisPool (shards) ;
ShardedJedis jedis = pool.getResource();

You can also combine horizontal sharding with split reads and writes. In this setup, you

have two or more Redis clusters, each of which stores part of the key space. You

dWs

1

Page 28



Amazon Web Services Performance at Scale with Amazon ElastiCache

configure your application with two separate sets of Redis handles, a write handle that
points to the sharded masters and a read handle that points to the sharded replicas.
Following is an example architecture, this time with Amazon DynamoDB rather than
MySQL, just to illustrate that you can use either one:

S/

J— A \
: Region :

1
: ELB :
1 i
1 ]
) T T T e e e e e e e e e e N T T T e e e e e e e e e -~ |
: lAZ A AZ B I :
b ¥ o
'
H I Auto Scaling I H
Vo | Group I
B e g
1 [}
| - I
Vol o |
1 P l [~ \ H
: | r - | 4 \ ) ) : :
: I .~ I\ 4 N : i
b CACHE ! o
i l |
| | I
1 ]
: | Redis Replica A Redis Master A | Redis Master B Redis Replica B |
' PN J y, \ y, - J H
Vo I
1 [}
v I
1 ]
| I
1 ]
| I
' I
: | DynamoDB |
] \ e e e e e e e e e M M e - N o e e e e e e e e e o — } ]
1 ]
~ /

For the purpose of simplification, the preceding diagram shows replicas in the same
Availability Zone as the primary node. In practice, you should place the replicas in a
different Availability Zone. From an application perspective, continuing with our Java
example, you configure two Redis connection pools as follows:

aws

S Page 29



Amazon Web Services Performance at Scale with Amazon ElastiCache

List<JedisShardInfo> masters = new
ArraylList<JedisShardInfo> () ;

masters.add (new JedisShardInfo ("redis-masterA", 6379));

masters.add (new JedisShardInfo ("redis-masterB", 6379));

ShardedJedisPool write pool = new
ShardedJedisPool (masters) ;

ShardedJedis write jedis = write pool.getResource () ;

List<JedisShardInfo> replicas = new
ArrayList<JedisShardInfo> () ;

replicas.add (new JedisShardInfo ("redis-replicaA", 6379));

replicas.add (new JedisShardInfo ("redis-replicaB", 6379)):;

ShardedJedisPool read pool = new
ShardedJedisPool (replicas) ;

ShardedJedis read jedis = read pool.getResource () ;

In designing your application, you need to make decisions as to whether a given value
can be read from the replica pool, which might be slightly out of date, or from the
primary write node. Be aware that reading from the primary node will ultimately limit the
throughput of your entire Redis layer, because it takes I/O away from writes.

Using multiple clusters in this fashion is the most advanced configuration of Redis

possible. In practice, it is overkill for most applications. However, if you design your
application so that it can leverage a split read/write Redis layer, you can apply this

design in the future, if your application grows to the scale where it is needed.

aws
Page 30



Amazon Web Services Performance at Scale with Amazon ElastiCache

Let's briefly look at some use cases that ElastiCache for Redis can support.

Game Leaderboards

If you've played online games, you're probably familiar with top 10 leaderboards. What
might not be obvious is that calculating a top n leaderboard in near-real time is actually
quite complex. An online game can easily have thousands of people playing
concurrently, each with stats that are changing continuously. Re-sorting these users
and reassigning a numeric position is computationally expensive.

Sorted sets are particularly interesting here, because they simultaneously guarantee
both the uniqueness and ordering of elements. Redis sorted set commands all start with
Z.When an element is inserted in a Redis sorted set, it is reranked in real time and
assigned a numeric position. Here is a complete game leaderboard example in Redis:

ZADD “leaderboard” 556 “Andy”
ZADD “leaderboard” 819 “Barry”
ZADD “leaderboard” 105 “Carl”
ZADD “leaderboard” 1312 “Derek”

ZREVRANGE “leaderboard” 0 -1
1) “Derek”

2) “Barry”

3) “Andy”

4) “Carl”

ZREVRANK “leaderboard” “Barry”
2

When a player's score is updated, the Redis command ZADD overwrites the existing
value with the new score. The list is instantly re-sorted, and the player receives a new
rank. For more information, refer to the Redis documentation on ZADD3°, ZRANGE?®?,
and ZRANK?3?,

Recommendation Engines

Similarly, calculating recommendations for users based on other items they've liked
requires very fast access to a large dataset. Some algorithms, such as Slope One®, are

dWs

Page 31


http://redis.io/commands/ZADD
http://redis.io/commands/zrange
http://redis.io/commands/zrank
https://en.wikipedia.org/wiki/Slope_One

Amazon Web Services Performance at Scale with Amazon ElastiCache

simple and effective but require in-memory access to every item ever rated by anyone
in the system. Even if this data is kept in a relational database, it has to be loaded in
memory somewhere to run the algorithm.

Redis data structures are a great fit for recommendation data. You can use Redis
counters used to increment or decrement the number of likes or dislikes for a given
item. You can use Redis hashes to maintain a list of everyone who has liked or disliked
that item, which is the type of data that Slope One requires. Here is a brief example of
storing item likes and dislikes:

INCR "item:38923:1ikes"

HSET "item:38923:ratings" "Susan" 1
INCR "item:38923:dislikes"

HSET "item:38923:ratings" "Tommy" -1

From this simple data, not only can we use Slope One or Jaccardian similarity to
recommend similar items, but we can use the same counters to display likes and
dislikes in the app itself. In fact, a number of open source projects use Redis in exactly
this manner, such as Recommendify®* and Recommendable®. In addition, because
Redis supports persistence, this data can live solely in Redis. This placement eliminates
the need for any data loading process, and also offloads an intensive process from your
main database.

Chat and Messaging

Redis provides a lightweight pub/sub mechanism that is well-suited to simple chat and
messaging needs. Use cases include in-app messaging, web chat windows, online
game invites and chat, and real-time comment streams (such as you might see during a
live streaming event). Two basic Redis commands are involved, PUBLISH and
SUBSCRIBE:

SUBSCRIBE "chat:114"

PUBLISH "chat:114" "Hello all"
["message", "chat:114", "Hello all"]

UNSUBSCRIBE "chat:114"

aws
Page 32


https://github.com/paulasmuth/recommendify
https://github.com/davidcelis/recommendable

Amazon Web Services Performance at Scale with Amazon ElastiCache

Unlike other Redis data structures, pub/sub messaging doesn't get persisted to disk.
Redis pub/sub messages are not written as part of the RDB or AOF backup files that
Redis creates. If you want to save these pub/sub messages, you will need to add them
to a Redis data structure, such as a list. For more details, see Using Pub/Sub for
Asynchronous Communication in the Redis Cookbook?®.

Also, because Redis pub/sub is not persistent, you can lose data if a cache node fails. If
you're looking for a reliable topic-based messaging system, consider evaluating
Amazon SNS.

Queues

Although we offer a managed queue service in the form of Amazon Simple Queue
Service (Amazon SQS) and we encourage customers to use it, you can also use Redis
data structures to build queuing solutions. The Redis documentation for RPOPLPUSH
covers two well-documented queuing patterns.®” In these patterns, Redis lists are used
to hold items in a queue. When a process takes an item from the queue to work on it,
the item is pushed onto an "in-progress” queue, and then deleted when the work is
done.

Open source solutions such as Resgue use Redis as a queue; GitHub uses Resque.®®

Redis does have certain advantages over other queue options, such as very fast speed,
once and only once delivery, and guaranteed message ordering. However, pay careful
attention to ElastiCache for Redis backup and recovery options (which we will cover
shortly) if you intend to use Redis as a queue. If a Redis node terminates and you have
not properly configured its persistence options, you can lose the data for the items in
your queue. Essentially, you need to view your queue as a type of database, and treat it
appropriately, rather than as a disposable cache.

Client Libraries and Consistent Hashing

As with Memcached, you can find Redis client libraries for the currently popular
programming languages. Any of these will work with ElastiCache for Redis:

Language Redis Library
Ruby redis-rb®°, Redis::Objects*®
Python redis-py**

adws

Page 33


https://github.com/rediscookbook/rediscookbook
https://github.com/rediscookbook/rediscookbook
https://redis.io/commands/rpoplpush
https://github.com/resque/resque
https://github.com/redis/redis-rb
https://github.com/nateware/redis-objects
https://github.com/andymccurdy/redis-py

Amazon Web Services Performance at Scale with Amazon ElastiCache

Language Redis Library

Node.js node redis*?, ioredis*®

PHP phpredis**, Predis*

Java Jedis?*®, Lettuce?*’, Redisson*®
C#/.NET

ServiceStack.Redis*?, StackExchange.Redis®°

GO go-redis/redis®!, Radix®?, Redigo®?

Unlike with Memcached, it is uncommon for Redis libraries to support consistent
hashing. Redis libraries rarely support consistent hashing because the advanced data
types that we discussed preceding cannot simply be horizontally sharded across
multiple Redis nodes. This point leads to another, very important one: Redis as a
technology cannot be horizontally scaled easily. Redis can only scale up to a larger
node size, because its data structures must reside in a single memory image in order to
perform properly.

Note that Redis Cluster was first made available in Redis version 3.0. It aims to provide
scale-out capability with certain data types. Redis Cluster currently only supports a
subset of Redis functionality, and has some important caveats about possible data loss.
For more details, see the Redis Cluster Specification.>*

Before we wrap up, let's spend some time talking about monitoring and performance
tuning.

Monitoring Cache Efficiency

To begin, see the Monitoring Use with CloudWatch topic for Redis®>® and Memcached®®,
as well as the Which Metrics Should | Monitor? topic for Redis®” and Memcached®® in
the Amazon ElastiCache User Guide. Both topics are excellent resources for
understanding how to measure the health of your ElastiCache cluster using the metrics
that ElastiCache publishes to Amazon CloudWatch. Most importantly, watch CPU

dWs

Page 34


https://github.com/NodeRedis/node_redis
https://github.com/luin/ioredis
https://github.com/phpredis/phpredis
https://github.com/nrk/predis
https://github.com/xetorthio/jedis/
https://github.com/lettuce-io/lettuce-core
https://github.com/redisson/redisson
https://github.com/ServiceStack/ServiceStack.Redis
https://github.com/StackExchange/StackExchange.Redis
https://github.com/go-redis/redis
https://github.com/mediocregopher/radix
https://github.com/gomodule/redigo
https://redis.io/topics/cluster-spec
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/CacheMetrics_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.WhichShouldIMonitor_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/CacheMetrics.WhichShouldIMonitor_html

Amazon Web Services Performance at Scale with Amazon ElastiCache

usage. A consistently high CPU usage indicates that a node is overtaxed, either by too
many concurrent requests, or by performing dataset operations in the case of Redis.

For Redis, ElastiCache provides two different types of metrics for monitoring CPU
usage: CPUULtilization and EngineCPUUtilization. Because Redis is single-threaded,
you need to multiply the CPU percentage by the number of cores to get an accurate
measure of CPUULtilization. For smaller node types with one or two vCPUSs, use the
CPUUtilization metric to monitor your workload. For larger node types with four or more
vCPUs, we recommend monitoring the EngineCPUUltilization metric, which reports the
percentage of usage on the Redis engine core.

After Redis maxes out a single CPU core, that node is fully utilized, and further scaling
is needed. If your main workload is from read requests, add more replicas to distribute
the read workloads across the replicas and reader endpoints. If your main workload is
from write requests, add more shards to distribute the write workload across more
primary nodes.

In addition to CPU, here is some additional guidance for monitoring cache memory
utilization. Each of these metrics is available in CloudWatch for your ElastiCache
cluster:

e Evictions—both Memcached and Redis manage cache memory internally, and
when memory starts to fill up they evict (delete) unused cache keys to free
space. A small number of evictions shouldn't alarm you, but a large number
means that your cache is running out of space.

e CacheMisses—the number of times a key was requested but not found in the
cache. This number can be fairly large if you're using lazy population as your
main strategy. If this number is remaining steady, it's likely nothing to worry
about. However, a large number of cache misses combined with a large eviction
number can indicate that your cache is thrashing due to lack of memory.

e BytesUsedForCacheltems—this value is the actual amount of cache memory
that Memcached or Redis is using. Both Memcached and Redis attempt to
allocate as much system memory as possible, even if it's not used by actual
cache keys. Thus, monitoring the system memory usage on a cache node
doesn't tell you how full your cache actually is.

e SwapUsage—in normal usage, neither Memcached nor Redis should be
performing swaps.

dWs

Page 35



Amazon Web Services Performance at Scale with Amazon ElastiCache

e Currconnections—this is a cache engine metric representing the number of
clients connected to the engine. We recommend that you determine your own
alarm threshold for this metric based on your application needs. An increasing
number of CurrConnections might indicate a problem with your application—
you’ll need to investigate the application’s behavior to address this issue.

A well-tuned cache node will show the number of cache bytes used to be almost equal
to the maxmemory parameter in Redis, or the max_cache_memory parameter in
Memcached. In steady state, most cache counters will increase, with cache hits
increasing faster than misses. You also will probably see a low number of evictions.
However, a rising number of evictions indicates that cache keys are getting pushed out
of memory, which means you can benefit from larger cache nodes with more memory.

The one exception to the evictions rule is if you follow a strict definition of Russian doll
caching, which says that you should never cause cache items to expire, but instead let
Memcached and Redis evict unused keys as needed. If you follow this approach, keep
a close watch on cache misses and bytes used to detect potential problems.

Watching for Hot Spots

In general, if you are using consistent hashing to distribute cache keys across your
cache nodes, your access patterns should be fairly even across nodes. However, you
still need to watch out for hot spots, which are nodes in your cache that receive higher
load than other nodes. This pattern is caused by hot keys, which are cache keys that
are accessed more frequently than others. Think of a social website, where you have
some users that might be 10,000 times more popular than an average user. That user's
cache keys will be accessed much more often, which can put an uneven load onto the
cache nodes that house that user's keys.

If you see uneven CPU usage among your cache nodes, you might have a hot spot.
This pattern often appears as one cache node having a significantly higher operation
count than other nodes. One way to confirm this is by keeping a counter in your
application of your cache key gets and puts. You can push these as custom metrics into
CloudWatch, or another monitoring service. Don't do this unless you suspect a hot spot,
however, because logging every key access will decrease the overall performance of
your application.

In the most common case, a few hot keys will not necessarily create any significant hot
spot issues. If you have a few hot keys on each of your cache nodes, then those hot
keys are themselves evenly distributed, and are producing an even load on your cache
nodes. If you have three cache nodes and each of them has a few hot keys, then you

aws
Page 36



Amazon Web Services Performance at Scale with Amazon ElastiCache

can continue sizing your cache cluster as if those hot keys did not exist. In practice,
even a well-designed application will have some degree of unevenness in cache key
access.

In extreme cases, a single hot cache key can create a hot spot that overwhelms a single
cache node. In this case, having good metrics about your cache, especially your most
popular cache keys, is crucial to designing a solution. One solution is to create a
mapping table that remaps very hot keys to a separate set of cache nodes. Although
this approach provides a quick fix, you will still face the challenge of scaling those new
cache nodes. Another solution is to add a secondary layer of smaller caches in front of
your main nodes, to act as a buffer. This approach gives you more flexibility, but
introduces additional latency into your caching tier.

The good news is that these concerns only hit applications of a significant scale. We
recommend being aware of this potential issue and monitoring for it, but not spending
time trying to engineer around it up front. Hot spots are a fast-moving area of computer
science research, and there is no one-size-fits-all solution. As always, our team of
Solutions Architects is available to work with you to address these issues if you
encounter them. For more research on this topic, refer to papers such as Relieving Hot
Spots on the World Wide Web®® and Characterizing Load Imbalance in Real-World
Networked Caches.5°

Memcached Memory Optimization

Memcached uses a slab allocator, which means that it allocates memory in fixed
chunks, and then manages those chunks internally. Using this approach, Memcached
can be more efficient and predictable in its memory access patterns than if it used the
system malloc(). The downside of the Memcached slab allocator is that memory chunks
are rigidly allocated once and cannot be changed later. This approach means that if you
choose the wrong number of the wrong size slabs, you might run out of Memcached
chunks while still having plenty of system memory available.

When you launch an ElastiCache cluster, the max_cache_memory parameter is set for
you automatically, along with several other parameters. For a list of default values, see
Memcached Specific Parameters in the Amazon ElastiCache for Memcached User
Guide.5! The key parameters to keep in mind are chunk_size and
chunk_size_growth_factor, which work together to control how memory chunks are
allocated.

dWs

Page 37


http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-716.pdf
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-716.pdf
https://ymsir.com/papers/imbalance-hotnets.pdf
https://ymsir.com/papers/imbalance-hotnets.pdf
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/ParameterGroups.Memcached_html

Amazon Web Services Performance at Scale with Amazon ElastiCache

Redis Memory Optimization

Redis has a good write-up on memory optimization that can come in handy for
advanced use cases.®? Redis exposes a number of Redis configuration variables that
will affect how Redis balances CPU and memory for a given dataset. These directives
can be used with ElastiCache for Redis as well.

Redis Backup and Restore

Redis clusters support persistence by using backup and restore. When Redis backup
and restore is enabled, ElastiCache can automatically take snapshots of your Redis
cluster and save them to Amazon Simple Storage Service (Amazon S3). The Amazon
ElastiCache User Guide includes excellent coverage of this function in the topic
ElastiCache for Redis Backup and Restore.%3

Because of the way Redis backups are implemented in the Redis engine itself, you
need to have more memory available that your dataset consumes. This requirement is
because Redis forks a background process that writes the backup data. To do so, it
makes a copy of your data, using Linux copy-on-write semantics. If your data is
changing rapidly, this approach means that those data segments will be copied,
consuming additional memory. For more details, refer to Amazon ElastiCache Backup
Best Practices.

For production use, we strongly recommend that you always enable Redis backups,
and retain them for a minimum of 7 days. In practice, retaining them for 14 or 30 days
will provide better safety in the event of an application bug that ends up corrupting data.

Even if you plan to use Redis primarily as a performance optimization or caching layer,
persisting the data means you can prewarm a new Redis node, which avoids the
thundering herd issue that we discussed earlier. To create a new Redis cluster from a
backup snapshot, see Seeding a New Cluster with an Externally Created Backup in the
Amazon ElastiCache for Redis User Guide.%*

You can also use a Redis snapshot to scale up to a larger Amazon EC2 instance type.
To do so, follow this process:

1. Suspend writes to your existing ElastiCache cluster. Your application can
continue to do reads.

2. Take a snapshot by following the procedure in the Creating a Manual Snapshot
section in the Amazon ElastiCache for Redis User Guide.®® Give it a distinctive
name that you will remember.

aws
Page 38


https://redis.io/topics/memory-optimization
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/backups_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/backups-seeding-redis_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/backups-manual_html

Amazon Web Services Performance at Scale with Amazon ElastiCache

3. Create a new ElastiCache Redis cluster, and specify the snapshot you took
preceding to seed it.

4. Once the new ElastiCache cluster is online, reconfigure your application to start
writing to the new cluster.

Currently, this process will interrupt your application's ability to write data into Redis. If
you have writes that are only going into Redis and that cannot be suspended, you can
put those into Amazon SQS while you are resizing your ElastiCache cluster. Then, once
your new ElastiCache Redis cluster is ready, you can run a script that pulls those
records off Amazon SQS and writes them to your new Redis cluster.

Scaling your application in response to changes in demand is one of the key benefits of
working with AWS. Many customers find that configuring their client with a list of node
DNS endpoints for ElastiCache works perfectly fine. But let's look at how to scale your
ElastiCache Memcached cluster while your application is running, and how to set up
your application to detect changes to your cache layer dynamically.

Auto Scaling Cluster Nodes

Amazon ElastiCache does not currently support using Auto Scaling to scale the number
of cache nodes in a cluster. To change the number of cache nodes, you can use either
the AWS Management Console or the AWS API to modify the cluster. For more
information, refer to Modifying an ElastiCache Cache Cluster in the Amazon
ElastiCache for Memcached User Guide.®®

In practice, you usually don't want to regularly change the number of cache nodes in
your Memcached cluster. Any change to your cache nodes will result in some
percentage of cache keys being remapped to new (empty) nodes, which means a
performance impact to your application. Even with consistent hashing, you will see an
impact on your application when adding or removing nodes.

Auto Discovery of Memcached Nodes

The ElastiCache Clients with Auto Discovery for Java, .NET, and PHP support Auto
Discovery of new ElastiCache Memcached nodes.®” For Ruby, the open source library
dalli-elasticache®® provides autodiscovery support, and django-elasticache® is available

aws
Page 39


https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clusters.Modify_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clients_html
https://github.com/ktheory/dalli-elasticache
https://github.com/gusdan/django-elasticache

Amazon Web Services Performance at Scale with Amazon ElastiCache

for Python Django. In other languages, you'll need to implement autodiscovery yourself.
Luckily, this implementation is very easy.

The overall Auto Discovery mechanism is outlined in the How Auto Discovery Works
topic in the Amazon ElastiCache for Memcached User Guide.”® Basically, ElastiCache
adds a special Memcached configuration variable called cluster that contains the DNS
names of the current cache nodes. To access this list, your application connects to your
cache cluster configuration endpoint’?, which is a hostname ending in
cfg.region.cache.amazonaws.com.

After you retrieve the list of cache node host names, your application configures its
Memcached client to connect to the list of cache nodes, using consistent hashing to
balance across them. Here is a complete working example in Ruby:

require 'socket'
require 'dalli'

socket = TCPSocket.new (

'my-cache-—
2a.z2vgb55.cfg.usw2.cache.amazonaws.com', 11211

)

socket.puts ("config get cluster")

header = socket.gets
version = socket.gets

nodelist = socket.gets.chomp.split (/\s+/).map{|1]|
l.split('|").first }

socket.close

# Configure Memcached client

cache = Dalli::Client.new(nodelist)

dWs

Page 40


https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/AutoDiscovery.HowAutoDiscoveryWorks_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Endpoints_html

Amazon Web Services Performance at Scale with Amazon ElastiCache

Using Linux utilities, you can even do this from the command line using netcat, which
can be useful in a script:

ec2-host$ echo "config get cluster" | \
nc my-cache-2a.z2vg55.cfg.usw2.cache.amazonaws.com 11211
\

grep 'cache.amazonaws.com' | tr ' ' '\n' | cut -d'|' -f 1

my-cache-2a.z2vg55.0001.usw2.cache.amazonaws.com

my-cache-2a.z2vg55.0002.usw2.cache.amazonaws.com

Using Auto Discovery, your Amazon EC2 application servers can locate Memcached
nodes as they are added to a cache cluster. However, once your application has an
open socket to a Memcached instance, it won't necessarily detect any changes to the
cache node list that might happen later. To make this a complete solution, two more
things are needed:

e The ability to scale cache nodes as needed

e The ability to trigger an application reconfiguration on the fly

Cluster Reconfiguration Events from Amazon SNS

Amazon ElastiCache publishes a number of notifications to Amazon SNS when a
cluster change happens, such as a configuration change or replacement of a node.
Because these notifications are sent through Amazon SNS, you can route them to
multiple endpoints, including email, Amazon SNS, or other Amazon EC2 instances. For
a complete list of Amazon SNS events that ElastiCache publishes, see the Event

dWs

Page 41



Amazon Web Services Performance at Scale with Amazon ElastiCache

Notifications and Amazon SNS topic for Redis”? or Memcached’ in the Amazon
ElastiCache User Guide.

If you want your application to dynamically detect nodes that are being added or
removed, you can use these notifications as follows. Note that the following process is
not required to deal with cache node failures. If a cache node fails and is replaced by
ElastiCache, the DNS name will remain the same. Most client libraries should
automatically reconnect once the cache node becomes available again.

The two most interesting events that ElastiCache publishes, at least for the purposes of
scaling our cache, are ElastiCache:AddCacheNodeComplete and
ElastiCache:RemoveCacheNodeComplete. These events are published when cache
nodes are added or removed from the cluster. By listening for these events, your
application can dynamically reconfigure itself to detect the new cache nodes. The basic
process for using Amazon SNS with your application is as follows:

1. Create an Amazon SNS topic for your ElastiCache alerts, as described in
Managing ElastiCache Amazon SNS Notifications in the Amazon ElastiCache
User Guide for Redis’* or Memcached’®.

2. Modify your application code to subscribe to this Amazon SNS topic. All of your
application instances will listen to the same topic. See the blog post Receiving
Amazon SNS Messages in PHP for details and code examples.”®

3. When a cache node is added or removed, you will receive a corresponding
Amazon SNS message. At that point, your application needs to be able to rerun
the Auto Discovery code we discussed preceding to get the updated cache node
list.

4. After your application has the new list of cache nodes, it also reconfigures its
Memcached client accordingly.

Again, this workflow is not needed for cache node recovery—only if nodes are added or
removed dynamically, and you want your application to dynamically detect them.

Otherwise, you can simply add the new cache nodes to your application's configuration,
and restart your application servers. To accomplish this with zero downtime to your app,
you can leverage solutions such as zero-downtime deploys with Elastic Beanstalk.

dWs

Page 42


https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ElastiCacheSNS_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/ElastiCacheSNS_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ECEvents.SNS_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/ECEvents.SNS_html
https://blogs.aws.amazon.com/php/post/Tx2G9D94IE6KPAY/Receiving-Amazon-SNS-Messages-in-PHP
https://blogs.aws.amazon.com/php/post/Tx2G9D94IE6KPAY/Receiving-Amazon-SNS-Messages-in-PHP

Amazon Web Services Performance at Scale with Amazon ElastiCache

Conclusion

Proper use of in-memory caching can result in an application that performs better and
costs less at scale. Amazon ElastiCache greatly simplifies the process of deploying an
in-memory cache in the cloud. By following the steps outlined in this paper, you can
easily deploy an ElastiCache cluster running either Memcached or Redis on AWS, and
then use the caching strategies we discussed to increase the performance and
resiliency of your application. You can change the configuration of ElastiCache to add,
remove, or resize nodes as your application's needs change over time, in order to get
the most out of your in-memory data tier.

Contributors

Contributors to this document include:

e Nate Wiger, Amazon Web Services

e Rajan Timalsina, Cloud Support Engineer, Amazon Web Services

Document Revisions

Date Description

July 2019 Corrected broken links, added links to libraries, and incorporated
minor text updates throughout.

May 2015 First publication

Notes

1 https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/GettingStarted.html

2 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/GettingStarted.html
3 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-
ug/Clusters.Create.html

4 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/nodes-select-
size.html

5 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/VPCs.EC.html

aws

S —— Page 43


https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/GettingStarted_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/GettingStarted_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clusters.Create_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clusters.Create_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/nodes-select-size_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/nodes-select-size_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/VPCs.EC_html

Amazon Web Services Performance at Scale with Amazon ElastiCache

6 https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC Subnets.html

7 https://docs.aws.amazon.com/vpc/latest/userquide/VPC SecurityGroups.html

8 hitps://docs.aws.amazon.com/AmazonElastiCache/latest/mem-
ug/VPCs.CreatingSubnetGroup.html

9 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clusters.Create.html

10 http://berb.github.io/diploma-thesis/

11 http://www.tom-e-white.com/2007/11/consistent-hashing.html

12 hitps://github.com/petergoldstein/dalli

13 https://github.com/ktheory/dalli-elasticache

14 https://github.com/youknowone/ring

15 https://qgithub.com/gusdan/django-elasticache

16 https://github.com/linsomniac/python-memcached

17 https://github.com/lericson/pylibmc

18 hitps://www.npmjs.com/package/memcached

19 https://github.com/awslabs/aws-elasticache-cluster-client-memcached-for-php

20 https://github.com/php-memcached-dev/php-memcached

21 https://qithub.com/awslabs/aws-elasticache-cluster-client-memcached-for-java

22 hitps://qithub.com/couchbase/spymemcached

23 hitps://qithub.com/awslabs/elasticache-cluster-config-net

24 hitps://qithub.com/enyim/EnyimMemcached

25 hitps://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clients.html

26 https://code.google.com/archive/p/spymemcached/

27 hitps://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/AutoDiscovery.html

28 https://github.com/RJ/ketama

29 https://signhalvnoise.com/posts/3690-the-performance-impact-of-russian-doll-caching
30 hitps://redis.io/commands/ZADD

31 https://redis.io/commands/zrange

dWs

T Page 44


https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Subnets_html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/VPCs.CreatingSubnetGroup_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/VPCs.CreatingSubnetGroup_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clusters.Create_html
http://berb.github.io/diploma-thesis/
http://www.tom-e-white.com/2007/11/consistent-hashing_html
https://github.com/petergoldstein/dalli
https://github.com/ktheory/dalli-elasticache
https://github.com/youknowone/ring
https://github.com/gusdan/django-elasticache
https://github.com/linsomniac/python-memcached
https://github.com/lericson/pylibmc
https://www.npmjs.com/package/memcached
https://github.com/awslabs/aws-elasticache-cluster-client-memcached-for-php
https://github.com/php-memcached-dev/php-memcached
https://github.com/awslabs/aws-elasticache-cluster-client-memcached-for-java
https://github.com/couchbase/spymemcached
https://github.com/awslabs/elasticache-cluster-config-net
https://github.com/enyim/EnyimMemcached
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clients_html
https://code.google.com/archive/p/spymemcached/
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/AutoDiscovery_html
https://github.com/RJ/ketama
https://signalvnoise.com/posts/3690-the-performance-impact-of-russian-doll-caching
https://redis.io/commands/ZADD
https://redis.io/commands/zrange

Amazon Web Services Performance at Scale with Amazon ElastiCache

32 hitps://redis.io/commands/zrank

33 hitps://en.wikipedia.org/wiki/Slope One

34 hitps://github.com/paulasmuth/recommendify

35 https://github.com/davidcelis/recommendable

36 https://github.com/rediscookbook/rediscookbook
37 https://redis.io/commands/rpoplpush

38 hitps://github.com/resque/resque

39 https://github.com/redis/redis-rb

40 hitps://github.com/nateware/redis-objects

41 hitps://github.com/andymccurdy/redis-py

42 https://github.com/NodeRedis/node redis

43 hitps://github.com/luin/ioredis

44 hitps://github.com/phpredis/phpredis

45 hitps://github.com/nrk/predis

46 https://github.com/xetorthio/jedis/

47 hitps://github.com/lettuce-io/lettuce-core

48 hitps://github.com/redisson/redisson

49 https://github.com/ServiceStack/ServiceStack.Redis

50 hitps://github.com/StackExchange/StackExchange.Redis

51 hitps://github.com/go-redis/redis

52 https://github.com/mediocregopher/radix

53 hitps://qithub.com/gomodule/redigo

54 https://redis.io/topics/cluster-spec
55 hitps://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.html

56 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/CacheMetrics.html

57 https://docs.aws.amazon.com/AmazonElastiCache/latest/red-
ug/CacheMetrics.WhichShouldIMonitor.html

dWs

) Page 45


https://redis.io/commands/zrank
https://en.wikipedia.org/wiki/Slope_One
https://github.com/paulasmuth/recommendify
https://github.com/davidcelis/recommendable
https://github.com/rediscookbook/rediscookbook
https://redis.io/commands/rpoplpush
https://github.com/resque/resque
https://github.com/redis/redis-rb
https://github.com/nateware/redis-objects
https://github.com/andymccurdy/redis-py
https://github.com/NodeRedis/node_redis
https://github.com/luin/ioredis
https://github.com/phpredis/phpredis
https://github.com/nrk/predis
https://github.com/xetorthio/jedis/
https://github.com/lettuce-io/lettuce-core
https://github.com/redisson/redisson
https://github.com/ServiceStack/ServiceStack.Redis
https://github.com/StackExchange/StackExchange.Redis
https://github.com/go-redis/redis
https://github.com/mediocregopher/radix
https://github.com/gomodule/redigo
https://redis.io/topics/cluster-spec
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/CacheMetrics_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.WhichShouldIMonitor_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheMetrics.WhichShouldIMonitor_html

Amazon Web Services Performance at Scale with Amazon ElastiCache

58 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-
ug/CacheMetrics.WhichShouldIMonitor.html

59 http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-716.pdf

60 https://ymsir.com/papers/imbalance-hotnets.pdf

61 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-
ug/ParameterGroups.Memcached.html

62 hitps://redis.io/topics/memory-optimization

63 https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/backups.html

64 https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/backups-seeding-redis.html

65 https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/backups-manual.html

66 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clusters.Modify.html

67 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clients.html

68 hitps://qithub.com/ktheory/dalli-elasticache

69 https://github.com/gusdan/django-elasticache

0 hitps://docs.aws.amazon.com/AmazonElastiCache/latest/mem-
ug/AutoDiscovery.HowAutoDiscoveryWorks.html

1 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Endpoints.html

72 https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ElastiCacheSNS.html

73 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/ElastiCacheSNS.html

74 https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ECEvents.SNS.html

5 https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ECEvents.SNS.html

6 hitps://blogs.aws.amazon.com/php/post/Tx2G9D94IE6KPAY/Receiving-Amazon-
SNS-Messages-in-PHP

dWs

) Page 46


https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/CacheMetrics.WhichShouldIMonitor_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/CacheMetrics.WhichShouldIMonitor_html
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-716.pdf
https://ymsir.com/papers/imbalance-hotnets.pdf
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/ParameterGroups.Memcached_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/ParameterGroups.Memcached_html
https://redis.io/topics/memory-optimization
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/backups_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/backups-seeding-redis_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/backups-manual_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clusters.Modify_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Clients_html
https://github.com/ktheory/dalli-elasticache
https://github.com/gusdan/django-elasticache
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/AutoDiscovery.HowAutoDiscoveryWorks_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/AutoDiscovery.HowAutoDiscoveryWorks_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Endpoints_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ElastiCacheSNS_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/ElastiCacheSNS_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ECEvents.SNS_html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ECEvents.SNS_html
https://blogs.aws.amazon.com/php/post/Tx2G9D94IE6KPAY/Receiving-Amazon-SNS-Messages-in-PHP
https://blogs.aws.amazon.com/php/post/Tx2G9D94IE6KPAY/Receiving-Amazon-SNS-Messages-in-PHP

	Introduction
	ElastiCache Overview
	Alternatives to ElastiCache
	Memcached vs. Redis
	ElastiCache for Memcached
	Architecture with ElastiCache for Memcached
	Selecting the Right Cache Node Size
	Security Groups and VPC

	Caching Design Patterns
	How to Apply Caching
	Consistent Hashing (Sharding)
	Client Libraries
	Be Lazy
	Write On Through
	Expiration Date
	The Thundering Herd
	Cache (Almost) Everything

	ElastiCache for Redis
	Architecture with ElastiCache for Redis
	Distributing Reads and Writes
	Multi-AZ with Auto-Failover
	Sharding with Redis

	Advanced Datasets with Redis
	Game Leaderboards
	Recommendation Engines
	Chat and Messaging
	Queues
	Client Libraries and Consistent Hashing

	Monitoring and Tuning
	Monitoring Cache Efficiency
	Watching for Hot Spots
	Memcached Memory Optimization
	Redis Memory Optimization
	Redis Backup and Restore

	Cluster Scaling and Auto Discovery
	Auto Scaling Cluster Nodes
	Auto Discovery of Memcached Nodes
	Cluster Reconfiguration Events from Amazon SNS

	Conclusion
	Contributors
	Document Revisions

