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Automatic sequences

A sequence (an)n≥0 is said to be k-automatic if there exists

I a deterministic finite automaton

I (with an output τ(q) associated with each state q)

I that, on input the base-k representation of n, reaches some
state p

I and τ(p) = an.
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Example: the Thue-Morse sequence

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

tn 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

0 0
1

1

0 1

Here tn counts the number of 1’s (mod 2) in the base-2
representation of n.

3 / 22



Fixed points of uniform morphisms

The Thue-Morse sequence can also be viewed in another way: as
the fixed point of the uniform morphism 0→ 01, 1→ 10.

(A morphism is uniform if each letter gets mapped to a word of
the same length.)

The class of fixed points of uniform morphisms has been widely
studied.

However, a larger class is the class of k-automatic sequences.
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The Rudin-Shapiro sequence

The Rudin-Shapiro sequence r = (rn)n≥0, is defined by rn = 1
(resp. −1) according to whether the number of (possibly
overlapping) occurrences of “11” in the binary expansion of n is
even (resp. odd). Then (rn)n≥0 is 2-automatic, since it is
generated by the automaton below.

00/ 1 11/ -1 10/ -101/ 1

0 1

1

1 0 0

10

Here the meaning of a state labeled ab/c is that the running sum
of the number of occurrences of “11” so far is congruent to a

modulo 2, the last digit input was b, and the output is c.
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The Rudin-Shapiro sequence

The Rudin-Shapiro sequence r is not a fixed point of a uniform
morphism.

Proof. If it were the fixed point of a k-uniform morphism for k not
a power of 2, then by a theorem of Cobham, it would be ultimately
periodic.
But it is known that the largest power in Rudin-Shapiro is 4,
contradiction.

So it must be the fixed point of a 2j -uniform morphism h for some
j ≥ 1.
Now r starts 00; if r = h(r) then r starts with h(0)h(0). This
means that r[2j − 1] = r[2j+1 − 1].
But the number of occurrences of 11 in 2j+1 − 1 is of opposite
parity of the number of occurrences of 11 in 2j − 1, a contradiction.
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The Rudin-Shapiro sequence

However, r is the image (under a coding – a letter-to-letter
morphism) of a fixed point of a uniform morphism:

a → ab; b → ac; c → db; d → dc

followed by the coding a, b → 1; c, d → −1.

The class of k-automatic sequences coincides with the class of
codings of fixed points of uniform morphisms (Cobham’s theorem).
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Some decidable properties of automatic sequences

Ultimate periodicity is decidable (Honkala, 1986; Leroux, 2005).

Squarefreeness and overlapfreeness is decidable (Allouche,
Rampersad, Shallit, 2009).

More generally, the property of avoiding α-powers (α rational) is
decidable (Allouche, Rampersad, Shallit, 2009), as is containing
infinitely many α-powers, or containing infinitely many distinct
α-powers.

Recurrence and uniform recurrence are decidable (Nicolas and
Pritykin, 2009).
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A decidability theorem – connections with logic

All of these are subsumed by the following result, which follows
from the work of Büchi, Bruyère, Michaux, Villemaire, and others:

Theorem.

If we can express a property P(n) of an integer n using quantifiers,
logical operations, integer variables, the operations of addition,
subtraction, indexing of a k-automatic sequence x, and comparison
of integers or elements of x, then ∃n P(n) and ∃∞n P(n) are
decidable.
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A decidability theorem

Proof.

Given an automaton M generating x, we transform it into an
automaton M ′ accepting the base-k representations of those n for
which the property holds.

The existential quantifier is implemented using nondeterminism,
and the universal quantifier is implemented using suitable
negations.

Addition and subtraction are performed digit-by-digit, keeping
track of carries; comparison of integers is done similarly.

Checking ∃nP(n) is then done by seeing if M ′ accepts anything
(has a path from initial state to an accepting state).

Checking ∃∞nP(n) is done by seeing if M ′ accepts infinitely many
strings (has a path from initial state to an accepting state of
length ≥ r , the number of states).
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An example

Consider the property of having an overlap.

A sequence x has an overlap beginning at position i if and only if
there exists an index ` ≥ 1, such that x[i + j ] = x[i + j + `] for
0 ≤ j ≤ `.

Given a DFA M1 generating x, we first create an NFA M2 that on
input (i , `) accepts if there exists j , 0 ≤ j ≤ `, such that
x[i + j ] 6= x[i + j + `]. To do this, M2 guesses the base-k
representation of j , digit-by-digit, verifies that j ≤ `, computes
i + j and i + j + ` on the fly, and accepts if x[i + j ] 6= x[i + j + `].

We now convert M2 to a DFA using the subset construction, and
change the “finality” of each state, obtaining a DFA M3. Then M3

accepts those pairs (i , `) such that x[i + j ] = x[i + j + `] for all j

with 0 ≤ j ≤ `. Now we create an NFA M4 that on input i guesses
` and accepts if M3 accepts (i , `).
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Details

When we talk about “accepting pairs (i , `)”, we really mean their
base-k expansion.

The base-k expansion of a pair is defined by taking the canonical
base-k expansion of both integers, and then padding the shorter
with leading zeroes (or trailing zeroes, if we are using the reversed
representation).

Problem: if “on input i we guess ` and accept if M accepts (i , `)”,
then it could be that ` is much longer than i .

To handle this, we also allow non-canonical expansions where both
elements of a pair have leading zeroes.
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Additional decidability properties

A word w is bordered if it begins and ends with the same word x

with 0 < |x | ≤ |w |/2.

An example in English is ingoing — it begins and ends with ing.

Otherwise it is unbordered.

Theorem.

Let x = a(0)a(1)a(2) · · · be a k-automatic sequence. Then the
associated infinite sequence b = b(0)b(1)b(2) · · · defined by

b(n) =

{

1, if x has an unbordered factor of length n;

0, otherwise;

is k-automatic.
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Proof. The sequence x has an unbordered factor of length n

iff

∃j ≥ 0 such that the factor of length n beginning at position j of x

is unbordered

iff

there exists an integer j ≥ 0 such that for all possible lengths l

with 1 ≤ l ≤ n/2, there is an integer i with 0 ≤ i < l such that the
supposed border of length l beginning and ending the factor of
length n beginning at position j of x actually differs in the i ’th
position

iff

there exists an integer j ≥ 0 such that for all integers l with
1 ≤ l ≤ n/2 there exists an integer i with 0 ≤ i < l such that
x[j + i ] 6= x[j + n − l + i ].
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Unbordered factors

Example. Consider the problem of determining for which lengths
the Thue-Morse sequence has an unbordered factor. Currie & Saari
(2009) proved that if n 6≡ 1 (mod 6), then there is an unbordered
factor of length n.
However, this is not a necessary condition, as

t[39..69] = 0011010010110100110010110100101,

which is an unbordered factor of length 31. They left it as an open
problem to give a complete characterization of the lengths for
which t has an unbordered factor. Our method shows the
characteristic sequence of such lengths is 2-automatic.

Further, we conjecture that there is an unbordered factor of length
n in t if and only if the base-2 expansion of n (starting with the
most significant digit) is not of the form 1(01∗0)∗10∗1.

In principle this could be verified, purely mechanically, by our
method, but we have not yet done so.
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Additional decidability properties

The following question is decidable, but does not seem to follow
from the theorem mentioned previously: given a k-automatic
sequence, does it contain powers of arbitrarily large exponent?

Proof. x has powers of arbitrarily high exponent iff

the set of pairs

S := {(n, j) : ∃i ≥ 0 such that for all t with 0 ≤ t < n we have

x[i + t] = x[i + j + t]}

contains pairs (n, j) with n/j arbitrarily large iff

for all i ≥ 0 S contains a pair (n, j) with n > j · 2i iff

L, the set of base-k encodings of pairs in S , contains, for each i ,
strings ending in

i
︷ ︸︸ ︷

[∗, 0][∗, 0] · · · [∗, 0][b, 0]

for some b 6= 0, where * means any digit. This is decidable.
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Nicolas-Pritykin recovered

Theorem. It is decidable if a k-automatic sequence is recurrent.

Proof. (an)n≥0 is recurrent if every factor that occurs, occurs
infinitely often.

It suffices to test whether each factor that occurs, occurs again in
a later position.

In other words, (an)n≥0 is recurrent iff for all i ≥ 0, ` ≥ 1, there
exists j > i such that a[i ..i + `− 1] = a[j ..j + `− 1].

This is decidable, by our Theorem.
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k-regular sequences

The class of k-automatic sequences is an interesting one but

- it must be over a finite alphabet.

Hence they cannot be used to enumerate unbounded quantities.

We would like a generalization over an infinite alphabet.
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k-regular sequences

To do so, we start from the following characterization of automatic
sequences.

A sequence (an)n≥0 is k-automatic if and only if the set

{(aken+i )n≥0 : e ≥ 0 and 0 ≤ i < ke}

is finite.

A sequence (an)n≥0 over Z is k-regular if and only if there exists a
finite set S of sequences such that each sequence in

{(aken+i )n≥0 : e ≥ 0 and 0 ≤ i < ke}

can be expressed as a linear combination of sequences in S .
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Examples of k-regular sequences

I sk(n), the sum of the base-k digits of n

I the Mallows-Propp sequence: the unique monotone sequence
(a(n))n≥0 of non-negative integers such that a(a(n)) = 2n for
n 6= 1

I the number of overlap-free binary words of length n (Carpi;
Cassaigne)
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Enumeration

Theorem.

Let S be a set of pairs of non-negative integers such that the
language of base-k representations

L = {(m, n)k : (m, n) ∈ S}

is regular (accepted by a finite automaton).

Then the sequence (am)m≥0 defined by

am = |{n : (m, n) ∈ S}|

is k-regular.

With this theorem we can recover or improve many results from
the literature.
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Improved results

If a = (an)n≥0 is a k-automatic sequence, then the following
associated sequences are k-regular.

I its subword complexity function, n → number of distinct
factors of length n

I Previously known for fixed points of k-uniform morphisms
(Mossé, 1996)

I its palindrome complexity function, n → number of distinct
factors of length n that are palindromes

I Previously known for fixed points of primitive k-uniform
morphisms (Allouche, Baake, Cassaigne, Damanik, 2003)

I its sequence of separator lengths (length of smallest factor
that begins at position n and does not occur previously)

I Previously known for fixed points of k-uniform circular
morphisms (Garel, 1997)

22 / 22



Improved results

If a = (an)n≥0 is a k-automatic sequence, then the following
associated sequences are k-regular sequences:

I the number of distinct square factors of length n; the number
of squares beginning at (centered at, ending at) position n;
the length of the longest square beginning at (centered at,
ending at) position n; the number of palindromes beginning at
(centered at, ending at) position n; the number of distinct
recurrent factors of length n; etc.,

I Previously known for the Thue-Morse sequence (Brown,
Rampersad, Shallit, Vasiga, 2006)
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New results

If (an)n≥0 is a k-automatic sequence, then the following associated
sequences are k-regular sequences:

I The number of unbordered factors of length n

I For the Thue-Morse sequence we have a conjectured recursive
expression for the number f (n) of unbordered factors of length
n. This could, in principle, be verified purely mechanically, by
our method.
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New results

If (an)n≥0 is a k-automatic sequence, then the following associated
sequences are k-regular sequences:

I The recurrence function of a, n → the smallest integer t such
that every factor of length t of a contains every factor of
length n

I The appearance function of a, n → the smallest integer t

such that the prefix of length t of a contains every factor of
length n
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Idea of proofs

We illustrate the idea behind all these results with an example:
subword complexity (number of distinct factors).

The number of distinct factors of length n in a equals the number
of first occurrences of each factor.

This equals the number of indices i such that there is no index
j < i with the factor of length n beginning at position i equal to
the factor of length n beginning at position j .
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Idea of proofs

So given a k-automatic sequence a = (an)n≥0 consider the set

S = {(n, i) : for all j with 0 ≤ j < i there exists t

with 0 ≤ t < n such that ai+t 6= aj+t}.

From our first theorem, the set of base-k encodings of S is a
regular language and hence by our second theorem, the subword
complexity function is k-regular.
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More recent results

In a paper to be presented at WORDS 2011, I have shown that

I Given a regular language L encoding a set S of pairs of
integers, the quantity sup(p,q)∈S

p
q
is either infinite or rational,

and it is computable

I The critical exponent of an automatic sequence (exponent of
the largest power of any factor) is a rational number and is
computable.

I The optimal constant for linear recurrence for an automatic
sequence is rational and computable.
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Linear recurrence

A sequence a = (an)n≥0 is linearly recurrent if there is a constant
C such that for all ` ≥ 0, and all factors x of length ` occurring in
a, any two consecutive occurrences of x are separated by at most
C` positions.

Given a, can we determine the smallest value of C that works?

The idea is, given the automaton for a, to construct an automaton
accepting the language of pairs (d , `) such that

(a) there is some factor of length ` for which there is another
occurrence at distance d and

(b) this occurrence is actually the very next occurrence.

Then sup(d ,`)∈S
d
`
gives the optimal C .
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Open Problems

Is the property of abelian-squarefreeness (abelian k-power-freeness)
decidable for automatic sequences?

For fixed points of some morphisms, this can be done (Currie &
Rampersad, 2011).
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Open Problems

Can you find a decision procedure for similar questions about
morphic sequences (images of fixed points of morphisms, not
necessarily uniform)?

We can do this for some morphic sequences, such as the Fibonacci
word, where addition can be performed in some associated base.

But the general case is still open.
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