

NP-Completeness Proofs

- Prove that problem X is NP-Complete
 - Show that X is in NP (usually easy)
 - Pick a known NP complete problem Y
 - Show Y <_P X

Reducibility Among Combinatorial Problems

SATISFABILITY
PROGRAPHING PROGRAPHING PROPERTY CHORES

SATISFABILITY SITE AT PROGRAPHING PROCESSES CHORES PROPERTY COVERNS

SEQUENCING PROCESSES CHORES CHORE

Populating the NP-Completeness Universe

- Circuit Sat <_P 3-SAT
- 3-SAT < P Independent Set
- 3-SAT <_P Vertex Cover
- Independent Set <_P Clique
- 3-SAT <_P Hamiltonian Circuit
- Hamiltonian Circuit <_P Traveling Salesman
- 3-SAT <_P Integer Linear Programming
- 3-SAT < P Graph Coloring
- 3-SAT <_P Subset Sum
- Subset Sum <_P Scheduling with Release times and deadlines

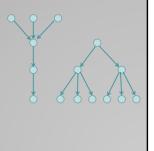
Coping with NP-Completeness

- Approximation Algorithms
- · Exact solution via Branch and Bound
- Local Search

I can't find an efficient algorithm, but neither can all these famous people.

Multiprocessor Scheduling

- Unit execution tasks
- Precedence graph
- K-Processors
- · Polynomial time for
- Open for k = constant
- NP-complete is k is part of the problem

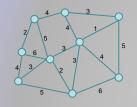


Highest level first is 2-Optimal

Choose k items on the highest level Claim: number of rounds is at least twice the optimal.

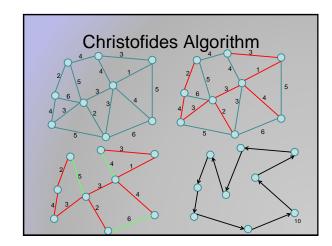
Christofides TSP Algorithm

 Undirected graph satisfying triangle inequality



- Add additional edges so that all vertices have even degree
 Build Eulerian Tour

3/2 Approximation



Branch and Bound

- · Brute force search tree of all possible solutions
- Branch and bound compute a lower bound on all possible extensions
 - Prune sub-trees that cannot be better than optimal

Branch and Bound for TSP Enumerate all possible paths Lower bound, Current path cost plus MST of remaining points Euclidean TSP Points on the plane with Euclidean Distance - Sample data set: State Capitals

Local Optimization

- Improve an optimization problem by local improvement
 - Neighborhood structure on solutions
 - Travelling Salesman 2-Opt (or K-Opt)
 - Independent Set Local Replacement

13

What we don't know • P vs. NP | P = NP

If P ≠ NP, is there anything in between

- Yes, Ladner [1975]
- Problems not known to be in P or NP Complete
 - Factorization
 - Discrete Log
 - Graph Isomorphism

1115111

Solve gk = b over a finite group

15

Complexity Theory

- Computational requirements to recognize languages
- Models of Computation
- Resources
- Hierarchies
- //complexityzoo.net

16

Time complexity

- · P: (Deterministic) Polynomial Time
- NP: Non-deterministic Polynomial Time
- EXP: Exponential Time

17

Space Complexity

- Amount of Space (Exclusive of Input)
- L: Logspace, problems that can be solved in O(log n) space for input of size n
 - Related to Parallel Complexity
- PSPACE, problems that can be required in a polynomial amount of space

18

Other types of computation

- Randomization
 - Can you solve problems faster with a random number generator?
- Quantum Computers
 - Can you solve problems faster if you have quantum bits which allow superposition?
 - · Probably yes: Shor's Integer Factoring algorithm

19

So what is beyond NP? **DIL SEUSS....** **TOND | SEYOND | SEYOND

NP vs. Co-NP

- Given a Boolean formula, is it true for some choice of inputs
- Given a Boolean formula, is it true for all choices of inputs

21

Problems beyond NP

- Exact TSP, Given a graph with edge lengths and an integer K, does the minimum tour have length K
- Minimum circuit, Given a circuit C, is it true that there is no smaller circuit that computes the same function a C

22

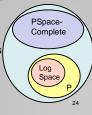
Polynomial Hierarchy

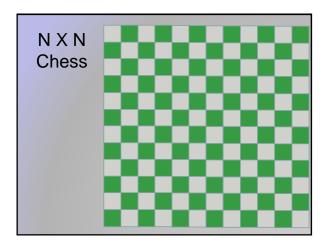
- Level 1
 - $-\exists X_1 \Phi(X_1), \forall X_1 \Phi(X_1)$
- Level 2
 - $\forall X_1 \exists X_2 \ \Phi(X_1, X_2), \ \exists X_1 \forall X_2 \ \Phi(X_1, X_2)$
- Level 3
 - $\forall X_1 \exists X_2 \forall X_3 \Phi(X_1, X_2, X_3), \exists X_1 \forall X_2 \exists X_3 \Phi(X_1, X_2, X_3)$

23

Polynomial Space

- Quantified Boolean Expressions
 - $\exists X_{1} \forall X_{2} \exists X_{3} ... \exists X_{n-1} \forall X_{n} \ \Phi(X_{1}, X_{2}, X_{3} ... X_{n-1} X_{n})$
- Space bounded games
 - Competitive Facility Location Problem
 - N x N Chess
- Counting problems
 - The number of Hamiltonian Circuits





Halting Problem

 Given a program P that does not take any inputs, does P eventually exit?

27

```
Impossibility of solving the Halting Problem

Suppose Halt(P) returns true if P halts, and false otherwise

Consider the program G:

What is Halt(G)?

bool G {
    if (Halt(G)) {
        while (true);
    }
    else {
        return true;
    }
}
```

Undecidable Problems

- · The Halting Problem is undecidable
- Impossible problems are hard . . .

29

