Skip to content

Jupyter Notebook을 활용한 Time-series data 분석 및 crawling 기술, D3를 이용한 시각화 기술 구현 및 연구

License

Notifications You must be signed in to change notification settings

mincloud1501/Python

Repository files navigation

The Python Study Project

Gitter chat   

All Codes implemented in Python (with Jupyter Notebook)

These implementations are for learning purposes. They may be less efficient than the implementations in the Python standard library. Use Jupyter Notebook & PyCharm Community Edition.

■ Python Data Analytic Library

  • Sources : 벡터 및 행렬 계산에 편의를 제공하는 라이브러리로 pandas,matplotlib의 기본 base library
  • Sources : 고유하게 정의된 자료 구조를 활용해서 빅데이터 분석 가능
  • Sources : numpy와 pasndas를 통해 얻은 데이터 분석결과를 시각화 해주는 라이브러리
  • Sources : matplotlib을 기반으로 하는 Python데이터 시각화 라이브러리로 매력적이고 정보를 제공하는 통계 그래픽을 그리기 위한 높은 수준의 인터페이스를 제공

Time Series Analytics with Pandas (On Windows)

■ Prerequisites for running with Anaconda3 install

  • python version 3

  • pandas version or later

  • numpy version 1.15.4 or later

  • matplotlib version 3.0.2 or later

  • seaborn version 0.9.0 or later

  • pandas version 0.23.4 or later

  • scikit-learn 0.20.2 or later

  • jupyter version 1.0.0 or later

  • statsmodels version 0.9.0 or later

  • konlpy version 0.5.1 or later

  • JPype1 version 0.7.0 or later

  • pytagcloud version 0.3.5 or later

  • simplejson version 3.16.0 or later

conda create --name mincloud python=3 conda install pandas jupyter seaborn scikit-learn statsmodels conda info --envs 
Collecting package metadata: done Solving environment: done ## Package Plan ## environment location: C:\Users\mincloud\Anaconda3 added / updated specs: - jupyter - pandas - scikit-learn - seaborn - statsmodels The following packages will be downloaded:	package | build ---------------------------|-------------------------------- ca-certificates-2018.03.07 | 0 155 KB certifi-2018.4.16 | py36_0 143 KB conda-4.6.14 | py36_0 2.1 MB openssl-1.0.2o | h8ea7d77_0 5.4 MB ------------------------------------------------------------ Total: 7.8 MB The following packages will be SUPERSEDED by a higher-priority channel: ca-certificates anaconda --> pkgs/main certifi anaconda --> pkgs/main conda anaconda --> pkgs/main openssl anaconda --> pkgs/main

■ Setup & Run

> git clone https://github.com/mincloud1501/Python.git 
  • Install the environment for this hands-on by running:
> cd Python/ > conda activate mincloud > python -m ipykernel install --name mincloud --user > jupyter notebook --port=8888 

USEFUL SHORTCUTS (Jupyter Notebook)

run_and_pass = 'Shift + Enter' run_and_add_cell = 'Alt + Enter' run_and_stay = 'Ctrl + Enter' recommendations = 'Tab' docstrings = 'Shift + Tab' add_hashtag = 'Ctrl + /' add_cell = 'b' delete_cell = 'dd'

■ Prerequisites for collecting Facebook data Sources

■ Prerequisites for collecting Naver data Sources

D3.js Reference for Data Visualizations

  • Sources
  • Sources
  • Sources

Pydeck

  • Pydeck library is a set of Python bindings for making spatial visualizations with deck.gl, optimized for a Jupyter Notebook environment.

Installation

$pip install pydeck
  • Jupyter notebook server에 설치하면, widget extension을 사용할 수 있다.
$jupyter nbextension install --sys-prefix --symlink --overwrite --py pydeck $jupyter nbextension enable --sys-prefix --py pydeck

Mapbox API token

  • Sources 에 계정 생성
  • Access Token Copy
  • Mapbox basemaps 사용을 위한 환경변수 설정 export MAPBOX_API_KEY=<mapbox-key-here>

mapbox

Getting started

import pydeck as pdk # 2014 locations of car accidents in the UK UK_ACCIDENTS_DATA = ('https://raw.githubusercontent.com/uber-common/' 'deck.gl-data/master/examples/3d-heatmap/heatmap-data.csv') # Define a layer to display on a map layer = pdk.Layer( 'HexagonLayer', UK_ACCIDENTS_DATA, get_position='[lng, lat]', auto_highlight=True, elevation_scale=50, pickable=True, elevation_range=[0, 3000], extruded=True, coverage=1) # Set the viewport location view_state = pdk.ViewState( longitude=-1.415, latitude=52.2323, zoom=6, min_zoom=5, max_zoom=15, pitch=40.5, bearing=-27.36) # Render r = pdk.Deck(layers=[layer], initial_view_state=view_state) r.to_html('demo.html') # Jupyter 환경 밖에서 실행  r.to_html('demo.html', notebook_display=False)

Category

See the Category.

About

Jupyter Notebook을 활용한 Time-series data 분석 및 crawling 기술, D3를 이용한 시각화 기술 구현 및 연구

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published