|
| 1 | +package org.algo4j.linear; |
| 2 | + |
| 3 | +import org.algo4j.util.MatrixCaster; |
| 4 | +import org.nd4j.linalg.api.ndarray.INDArray; |
| 5 | +import org.nd4j.linalg.factory.Nd4j; |
| 6 | +import org.nd4j.linalg.ops.transforms.Transforms; |
| 7 | + |
| 8 | +/** |
| 9 | + * Matrix class. |
| 10 | + * |
| 11 | + * @author Ray Eldath |
| 12 | + * @since 1.0.6 |
| 13 | + */ |
| 14 | + |
| 15 | +@SuppressWarnings("unused") |
| 16 | +public class Matrix { |
| 17 | +private INDArray data; |
| 18 | + |
| 19 | +public Matrix(int[][] data) { |
| 20 | +this.data = Nd4j.create(MatrixCaster.cast(data)); |
| 21 | +} |
| 22 | + |
| 23 | +public Matrix(float[][] data) { |
| 24 | +this.data = Nd4j.create(data); |
| 25 | +} |
| 26 | + |
| 27 | +public Matrix(double[][] data) { |
| 28 | +this.data = Nd4j.create(data); |
| 29 | +} |
| 30 | + |
| 31 | +Matrix(INDArray array) { |
| 32 | +this.data = array; |
| 33 | +} |
| 34 | + |
| 35 | +public INDArray nativeData() { |
| 36 | +return data; |
| 37 | +} |
| 38 | + |
| 39 | +public Matrix addEach(int n) { |
| 40 | +return new Matrix(data.add(n)); |
| 41 | +} |
| 42 | + |
| 43 | +public Matrix multiplyEach(int n) { |
| 44 | +return new Matrix(data.mul(n)); |
| 45 | +} |
| 46 | + |
| 47 | +public Matrix minusEach(int n) { |
| 48 | +return new Matrix(data.subi(n)); |
| 49 | +} |
| 50 | + |
| 51 | +public Matrix divideEach(int n) { |
| 52 | +return new Matrix(data.divi(n)); |
| 53 | +} |
| 54 | + |
| 55 | +public Matrix add(ColumnVector vector) { |
| 56 | +return new Matrix(data.add(vector.nativeData())); |
| 57 | +} |
| 58 | + |
| 59 | +public Matrix add(RowVector vector) { |
| 60 | +return new Matrix(data.add(vector.nativeData())); |
| 61 | +} |
| 62 | + |
| 63 | +public Matrix multiply(ColumnVector vector) { |
| 64 | +return new Matrix(data.mul(vector.nativeData())); |
| 65 | +} |
| 66 | + |
| 67 | +public Matrix multiply(RowVector vector) { |
| 68 | +return new Matrix(data.mul(vector.nativeData())); |
| 69 | +} |
| 70 | + |
| 71 | +public Matrix minus(ColumnVector vector) { |
| 72 | +return new Matrix(data.sub(vector.nativeData())); |
| 73 | +} |
| 74 | + |
| 75 | +public Matrix minus(RowVector vector) { |
| 76 | +return new Matrix(data.sub(vector.nativeData())); |
| 77 | +} |
| 78 | + |
| 79 | +public Matrix divide(ColumnVector vector) { |
| 80 | +return new Matrix(data.div(vector.nativeData())); |
| 81 | +} |
| 82 | + |
| 83 | +public Matrix divide(RowVector vector) { |
| 84 | +return new Matrix(data.div(vector.nativeData())); |
| 85 | +} |
| 86 | + |
| 87 | +public Matrix sigmoid() { |
| 88 | +return new Matrix(Transforms.sigmoid(data)); |
| 89 | +} |
| 90 | + |
| 91 | +public Matrix tanh() { |
| 92 | +return new Matrix(Transforms.tanh(data)); |
| 93 | +} |
| 94 | + |
| 95 | +public Matrix abs() { |
| 96 | +return new Matrix(Transforms.abs(data)); |
| 97 | +} |
| 98 | + |
| 99 | +public Matrix sqrt() { |
| 100 | +return new Matrix(Transforms.sqrt(data)); |
| 101 | +} |
| 102 | + |
| 103 | +public Matrix exp() { |
| 104 | +return new Matrix(Transforms.exp(data)); |
| 105 | +} |
| 106 | + |
| 107 | +public Matrix transpose() { |
| 108 | +return new Matrix(data.transpose()); |
| 109 | +} |
| 110 | + |
| 111 | +public Matrix reshape(int rowN, int columnN) { |
| 112 | +return new Matrix(data.reshape(rowN, columnN)); |
| 113 | +} |
| 114 | + |
| 115 | +public double get(int row, int column) { |
| 116 | +return data.getDouble(row, column); |
| 117 | +} |
| 118 | + |
| 119 | +public double[][] cast() { |
| 120 | +return MatrixCaster.cast(this); |
| 121 | +} |
| 122 | + |
| 123 | +@Override |
| 124 | +public String toString() { |
| 125 | +return "Matrix{" + |
| 126 | +"data=" + data.toString() + |
| 127 | +'}'; |
| 128 | +} |
| 129 | +} |
0 commit comments