|
| 1 | +# The HackerRank Interview Preparation Kit |
| 2 | +## 3. Dictionaries and Hashmaps |
| 3 | + |
| 4 | +### 3.3. Sherlock and Anagrams |
| 5 | + |
| 6 | +#### Problem |
| 7 | + |
| 8 | +Two strings are anagrams of each other if the letters of one string can be rearranged to form the other string. Given a string, find the number of pairs of substrings of the string that are anagrams of each other. |
| 9 | + |
| 10 | +For example `s = mom`, the list of all anagrammatic pairs is `[m,m], [mo,om]` at positions [[0], [2], [[0,1], [1,2]]] recpectively. |
| 11 | + |
| 12 | +<br> |
| 13 | + |
| 14 | +**Function Description** |
| 15 | + |
| 16 | +Complete the function `sherlockAndAnagrams` in the editor below. It must return an integer that represents the number of anagrammatic pairs of substrings in `s`. |
| 17 | + |
| 18 | +`sherlockAndAnagrams` has the followint parameter(s): |
| 19 | +* `s` : a string |
| 20 | + |
| 21 | +<br> |
| 22 | + |
| 23 | +#### Input Format |
| 24 | + |
| 25 | +The first line contains an integer `q`, the number of queries. |
| 26 | + |
| 27 | +Each of the next `q` lines contains a string `s` to analyze. |
| 28 | + |
| 29 | +<br> |
| 30 | + |
| 31 | +#### Constraints |
| 32 | + |
| 33 | +* String `s` contains only lowercase letters € ascii[a-z]. |
| 34 | +* 1 <= `q` <= 10 |
| 35 | +* 2 <= `|s|` <= 100 |
| 36 | + |
| 37 | + |
| 38 | +<br> |
| 39 | + |
| 40 | +#### Output Format |
| 41 | + |
| 42 | +For each query, return the number of unordered anagrammatic pairs. |
| 43 | + |
| 44 | +<br> |
| 45 | + |
| 46 | +**Sample Input 0** |
| 47 | + |
| 48 | +``` |
| 49 | +2 |
| 50 | +abba |
| 51 | +abcd |
| 52 | +``` |
| 53 | + |
| 54 | +<br> |
| 55 | + |
| 56 | +**Sample Output 0** |
| 57 | + |
| 58 | +``` |
| 59 | +4 |
| 60 | +0 |
| 61 | +``` |
| 62 | + |
| 63 | + |
| 64 | +<br> |
| 65 | + |
| 66 | +**Explanation 0** |
| 67 | + |
| 68 | + |
| 69 | +The list of anagrammatic pairs is `[a,a]`,` [ab,ba]`, `[b,b]` and `[abb,bba]` at positions `[[0,3]]`, `[[0,1], [2,3]]`, `[[1], [2]]` and `[[0,1,2],[1,2,3]]` respectively. |
| 70 | + |
| 71 | +No anagrammatic pairs exist in the second query as no character repeats. |
| 72 | + |
| 73 | + |
| 74 | +<br> |
| 75 | + |
| 76 | + |
| 77 | +**Sample Input 1** |
| 78 | + |
| 79 | +``` |
| 80 | +2 |
| 81 | +ifailuhkqq |
| 82 | +kkkk |
| 83 | +``` |
| 84 | + |
| 85 | +<br> |
| 86 | + |
| 87 | +**Sample Output 1** |
| 88 | + |
| 89 | +``` |
| 90 | +3 |
| 91 | +10 |
| 92 | +``` |
| 93 | + |
| 94 | + |
| 95 | +<br> |
| 96 | + |
| 97 | +**Explanation 1** |
| 98 | + |
| 99 | + |
| 100 | +For thw first query, we have anagram pairs `[i,i]`, `[q,q]` and `[ifa,fai]` at positions `[[0], [3]]`, `[[8],[9]]` and `[[0,1,2],[1,2,3]]` respectively. |
| 101 | + |
| 102 | +For the second query: |
| 103 | + |
| 104 | +There are 6 anagrams of the form `[k,k]` at positions `[[0],[1], [[0],[2]], [[0],[3]], [[1],[2]], [[1],[3]]]` and `[[2],[3]]` |
| 105 | + |
| 106 | +There are 3 anagrams of the form `[kk,kk]` at positions `[[0,1], [1,2]]`, `[[0,1],[2,3]]` and `[[1,2],[2,3]]` |
| 107 | + |
| 108 | +There is 1 anagram of the form `[kkk,kkk]` at positions `[[0,1,2],[1,2,3]]` |
| 109 | + |
| 110 | + |
| 111 | + |
| 112 | +<br> |
| 113 | + |
| 114 | + |
| 115 | +**Sample Input 2** |
| 116 | + |
| 117 | +``` |
| 118 | +1 |
| 119 | +cdcd |
| 120 | +``` |
| 121 | + |
| 122 | +<br> |
| 123 | + |
| 124 | +**Sample Output 2** |
| 125 | + |
| 126 | +``` |
| 127 | +5 |
| 128 | +``` |
| 129 | + |
| 130 | + |
| 131 | +<br> |
| 132 | + |
| 133 | +**Explanation 2** |
| 134 | + |
| 135 | + |
| 136 | +There are two anagrammatic pairs of lenght `1` : `[c,c]` and `[d,d]` |
| 137 | + |
| 138 | +There are three anagrammatic pairs of lenght `2` : `[cd,dc]`, `[cd,cd]`, `[dc,cd]` at positions `[[0,1], [1,2]]`, `[[0,1], [2,3]]`, `[[1,2],[2,3]]` respectively. |
| 139 | + |
| 140 | + |
| 141 | + |
| 142 | +<br> |
| 143 | + |
| 144 | + |
| 145 | +### Given Code |
| 146 | + |
| 147 | +```python |
| 148 | +import math |
| 149 | +import os |
| 150 | +import random |
| 151 | +import re |
| 152 | +import sys |
| 153 | + |
| 154 | +# Complete the sherlockAndAnagrams function below. |
| 155 | +def sherlockAndAnagrams(s): |
| 156 | + |
| 157 | +if __name__ == '__main__': |
| 158 | + fptr = open(os.environ['OUTPUT_PATH'], 'w') |
| 159 | + |
| 160 | + q = int(input()) |
| 161 | + |
| 162 | + for q_itr in range(q): |
| 163 | + s = input() |
| 164 | + |
| 165 | + result = sherlockAndAnagrams(s) |
| 166 | + |
| 167 | + fptr.write(str(result) + '\n') |
| 168 | + |
| 169 | + fptr.close() |
| 170 | +``` |
| 171 | + |
| 172 | + |
| 173 | +## Solution |
| 174 | + |
| 175 | +```python |
| 176 | +import math |
| 177 | +import os |
| 178 | +import random |
| 179 | +import re |
| 180 | +import sys |
| 181 | + |
| 182 | +# Complete the sherlockAndAnagrams function below. |
| 183 | +def sherlockAndAnagrams(s): |
| 184 | + n = len(s) |
| 185 | + r = 0 |
| 186 | + |
| 187 | + for i in range(1,n): |
| 188 | + d = {} |
| 189 | + for j in range(n-i+1): |
| 190 | + subs = "".join(sorted(s[j:j+i])) |
| 191 | + if subs in d: |
| 192 | + d[subs] += 1 |
| 193 | + else: |
| 194 | + d[subs] =1 |
| 195 | + r += d[subs]-1 |
| 196 | + |
| 197 | + return r |
| 198 | + |
| 199 | + |
| 200 | +if __name__ == '__main__': |
| 201 | + fptr = open(os.environ['OUTPUT_PATH'], 'w') |
| 202 | + |
| 203 | + q = int(input()) |
| 204 | + |
| 205 | + for q_itr in range(q): |
| 206 | + s = input() |
| 207 | + |
| 208 | + result = sherlockAndAnagrams(s) |
| 209 | + |
| 210 | + fptr.write(str(result) + '\n') |
| 211 | + |
| 212 | + fptr.close() |
| 213 | + |
| 214 | +``` |
0 commit comments