@@ -12,7 +12,7 @@ import org.apache.spark.streaming.kafka010._
1212object DirectKafkaWordCount {
1313 def main (args : Array [String ]) {
1414
15- val Array (brokers, groupId, topics) = Array (" 111.230.17.36:9094" ," testGroup02 " ," jd_data01 " )
15+ val Array (brokers, groupId, topics) = Array (" 111.230.17.36:9094" ," testGroup " ," kylin_streaming_topic " )
1616
1717 // Create context with 2 second batch interval
1818 val sparkConf = new SparkConf ().setAppName(" DirectKafkaWordCount" ).setMaster(" local" )
@@ -32,12 +32,12 @@ object DirectKafkaWordCount {
3232 ConsumerStrategies .Subscribe [String , String ](topicsSet, kafkaParams))
3333
3434 // Get the lines, split them into words, count the words and print
35- val lines = messages.map(_.value)
35+ /* val lines = messages.map(_.value)
3636 val words = lines.flatMap(_.split(" "))
3737 val wordCounts = words.map(x => (x, 1L)).reduceByKey(_ + _)
38- wordCounts.print()
38+ wordCounts.print()*/
3939
40- /* messages.foreachRDD{rdd =>
40+ messages.foreachRDD{rdd =>
4141 val offsetRanges = rdd.asInstanceOf [HasOffsetRanges ].offsetRanges
4242 rdd.foreachPartition { item =>
4343 val o : OffsetRange = offsetRanges(TaskContext .get.partitionId)
@@ -46,7 +46,7 @@ object DirectKafkaWordCount {
4646 println(s " The record content is ${item.toList.mkString}" )
4747 }
4848 rdd.count()
49- }*/
49+ }
5050
5151 // Start the computation
5252 ssc.start()
0 commit comments