|
5 | 5 | * False Positive (FP) - 标签为负,预测为正 |
6 | 6 | * False Negative (FN) - 标签为正,预测为负 |
7 | 7 |
|
8 | | - |
9 | | -|metrics|definition|description| |
10 | | -|-------|----------|-----------| |
11 | | -|Precision (Positive Predictive Value)|\\(PPV=\frac{TP}{TP + FP}\\)|准确率| |
12 | | -|Recall (True Positive Rate)|\\(TPR=\frac{TP}{P}=\frac{TP}{TP + FN}\\)|召回率| |
13 | | -|FPR|\\(FPR = \frac{FP}{FP+TN}\\)|| |
14 | | -|F-measure|\\(F(\beta) = \left(1 + \beta^2\right) \cdot \left(\frac{PPV \cdot TPR}{\beta^2 \cdot PPV + TPR}\right) = \frac{1}{\frac{1}{1+\beta^2}\frac{1}{\text{PPV}}+\frac{\beta^2}{1+\beta^2}\frac{1}{\text{TPR}}}\\) | \\(\beta\\)代表模型分类的偏好,当\\(\beta\\)小于1时,Precision更重要;<br/>当\\(\beta\\)大于1时,Recall更重要;<br/>当\\(\beta = 1\\)时,指标退化为F1。| |
15 | | -|Receiver Operating Characteristic (ROC)|\\(FPR(T)=\int^\infty_{T} P_0(T)\,dT\\) <br/> \\(TPR(T)=\int^\infty_{T} P_1(T)\,dT\\)|| |
16 | | -|Area Under ROC Curve|\\(AUROC=\int^1_{0} \frac{TP}{P} d\left(\frac{FP}{N}\right)\\)|| |
17 | | -|Area Under Precision-Recall Curve|\\(AUPRC=\int^1_{0} \frac{TP}{TP+FP} d\left(\frac{TP}{P}\right)\\)|| |
18 | | -|MAE|\\(MAE = \frac{1}{n}\sum_{i=0}^n\mid y_i - \hat{y_i} \mid \\)|负向指标,值越小越好,取值范围0到无穷大;<br/>对比RMSE,易解释,易理解,易计算| |
19 | | -|RMSE|\\(RMSE = \sqrt{\frac{1}{n}\sum_{i=0}^n {\({y_i} - \hat{y_i}\)}^2 }\\)|又作RMSD(root mean square deviation),负向指标,值越小越好,取值范围0到无穷大;<br/>能更好的限制误差的量级,有效识别大误差| |
20 | | -|DCG|\\( DCG = rel_1+\sum_{i=2}^p \frac{rel_i}{\log_2 i} \\)|当权重以单调递减方式排序后,DCG可取到最大值,为iDCG(ideal DCG)| |
21 | | -|NDCG|\\( NDCG = \frac{DCG}{iDCG}\\)| | |
22 | | - |
23 | | -### MAE: mean absolute error |
24 | | - |
25 | | -### RMSE: root mean square error |
| 8 | +### Confusion Matrix |
| 9 | + |
26 | 10 |
|
27 | 11 | ### KS TEST |
28 | 12 | - 基于累计分布函数,用于检验数据是否符合某个分布或两个分布是否相同; |
29 | 13 | - 可以用来测量模型区分正例和负例的能力,即正例分布和负例分布的分离程度的度量; |
| 14 | +- 下表显示了正负样本在不同区间上的统计数和累计个数: |
| 15 | + |
| 16 | +- 下图显示了正负样本的累计分布随区间阈值而变化的趋势: |
| 17 | + |
| 18 | +- 可发现,在第7个区间上,两个累计分布的间隔达到最大为(94%-12%=82%),即ks-test值为0.82 |
30 | 19 |
|
31 | | -### DCG: discounted cumulative gain |
32 | | -- 信息检索中,用来测量搜索引擎(排序系统,推荐系统)检索质量的评价指标; |
33 | | -- 权重高的项排在前面的DCG值越大,越往后DCG值越小; |
| 20 | +### ROC: Receiver operating characteristic(接收机操作特性) |
| 21 | +- 以(FPR,TPR)为点作出的曲线; |
34 | 22 |
|
| 23 | + |
35 | 24 |
|
36 | | -### NDCG: Normalized DCG |
37 | | - |
38 | | -### AUC: Area Under ROC Curve(Receiver operating characteristic) |
| 25 | +### AUC: Area Under ROC Curve |
| 26 | +- 当roc曲线下面积auc值为1时,意味着分类器能够完美的区分正例和负例,是一个完美分类器; |
| 27 | +- roc值为0.5时,意味着分类器无法区分正例和负例,是完全随机的分类器; |
| 28 | +- roc值在0.8以上时即为好的分类器。 |
39 | 29 |
|
40 | 30 | ### AUPRC: Area Under Precision-Recall Curve |
41 | 31 |
|
| 32 | +### DCG: discounted cumulative gain |
| 33 | +- 信息检索中,用来测量搜索引擎(排序系统,推荐系统)检索质量的评价指标; |
| 34 | +- 权重高的项排在前面的DCG值越大,越往后DCG值越小; |
| 35 | + |
| 36 | +### NDCG: Normalized DCG |
42 | 37 |
|
43 | 38 | > https://en.wikipedia.org/wiki/Mean_absolute_error |
44 | 39 | > https://en.wikipedia.org/wiki/Root-mean-square_deviation |
|
47 | 42 | > http://spark.apache.org/docs/2.2.1/mllib-evaluation-metrics.html |
48 | 43 | > https://en.wikipedia.org/wiki/Receiver_operating_characteristic |
49 | 44 |
|
| 45 | + |
| 46 | +### 计算公式 |
| 47 | + |
| 48 | +|metrics|definition|description| |
| 49 | +|-------|----------|-----------| |
| 50 | +|Precision (Positive Predictive Value)|\\(PPV=\frac{TP}{TP + FP}\\)|准确率| |
| 51 | +|Recall (True Positive Rate)|\\(TPR=\frac{TP}{P}=\frac{TP}{TP + FN}\\)|召回率| |
| 52 | +|FPR|\\(FPR = \frac{FP}{FP+TN}\\)|| |
| 53 | +|F-measure|\\(F(\beta) = \left(1 + \beta^2\right) \cdot \left(\frac{PPV \cdot TPR}{\beta^2 \cdot PPV + TPR}\right) = \frac{1}{\frac{1}{1+\beta^2}\frac{1}{\text{PPV}}+\frac{\beta^2}{1+\beta^2}\frac{1}{\text{TPR}}}\\) | \\(\beta\\)代表模型分类的偏好,当\\(\beta\\)小于1时,Precision更重要;<br/>当\\(\beta\\)大于1时,Recall更重要;<br/>当\\(\beta = 1\\)时,指标退化为F1。| |
| 54 | +|Receiver Operating Characteristic (ROC)|\\(FPR(T)=\int^\infty_{T} P_0(T)\,dT\\) <br/> \\(TPR(T)=\int^\infty_{T} P_1(T)\,dT\\)|| |
| 55 | +|Area Under ROC Curve|\\(AUROC=\int^1_{0} \frac{TP}{P} d\left(\frac{FP}{N}\right)\\)|| |
| 56 | +|Area Under Precision-Recall Curve|\\(AUPRC=\int^1_{0} \frac{TP}{TP+FP} d\left(\frac{TP}{P}\right)\\)|| |
| 57 | +|MAE(mean absolute error)|\\(MAE = \frac{1}{n}\sum_{i=0}^n\mid y_i - \hat{y_i} \mid \\)|负向指标,值越小越好,取值范围0到无穷大;<br/>对比RMSE,易解释,易理解,易计算| |
| 58 | +|RMSE(root mean square error)|\\(RMSE = \sqrt{\frac{1}{n}\sum_{i=0}^n {\({y_i} - \hat{y_i}\)}^2 }\\)|又作RMSD(root mean square deviation),负向指标,值越小越好,取值范围0到无穷大;<br/>能更好的限制误差的量级,有效识别大误差| |
| 59 | +|DCG|\\( DCG = rel_1+\sum_{i=2}^p \frac{rel_i}{\log_2 i} \\)|当权重以单调递减方式排序后,DCG可取到最大值,为iDCG(ideal DCG)| |
| 60 | +|NDCG|\\( NDCG = \frac{DCG}{iDCG}\\)| | |
| 61 | + |
50 | 62 | <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=default"></script> |
0 commit comments