Skip to content

Commit 709c18e

Browse files
Khansa435pre-commit-ci[bot]cclauss
authored
Add t stochastic neighbour embedding using Iris dataset (TheAlgorithms#13476)
* Added t-SNE with Iris dataset example * Added t-SNE with Iris dataset example * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Updated with descriptive variables * Add descriptive variable names * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add Descriptive Variable names * Adding Descriptive variable names * Update machine_learning/t_stochastic_neighbour_embedding.py Co-authored-by: Christian Clauss <cclauss@me.com> * Update machine_learning/t_stochastic_neighbour_embedding.py Co-authored-by: Christian Clauss <cclauss@me.com> * Improved line formatting * Adding URL for t-SNE Wikipedia * Apply suggestion from @cclauss --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Christian Clauss <cclauss@me.com>
1 parent 1562ae1 commit 709c18e

File tree

1 file changed

+178
-0
lines changed

1 file changed

+178
-0
lines changed
Lines changed: 178 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,178 @@
1+
"""
2+
t-distributed stochastic neighbor embedding (t-SNE)
3+
4+
For more details, see:
5+
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
6+
"""
7+
8+
import doctest
9+
10+
import numpy as np
11+
from numpy import ndarray
12+
from sklearn.datasets import load_iris
13+
14+
15+
def collect_dataset() -> tuple[ndarray, ndarray]:
16+
"""
17+
Load the Iris dataset and return features and labels.
18+
19+
Returns:
20+
tuple[ndarray, ndarray]: Feature matrix and target labels.
21+
22+
>>> features, targets = collect_dataset()
23+
>>> features.shape
24+
(150, 4)
25+
>>> targets.shape
26+
(150,)
27+
"""
28+
iris_dataset = load_iris()
29+
return np.array(iris_dataset.data), np.array(iris_dataset.target)
30+
31+
32+
def compute_pairwise_affinities(data_matrix: ndarray, sigma: float = 1.0) -> ndarray:
33+
"""
34+
Compute high-dimensional affinities (P matrix) using a Gaussian kernel.
35+
36+
Args:
37+
data_matrix: Input data of shape (n_samples, n_features).
38+
sigma: Gaussian kernel bandwidth.
39+
40+
Returns:
41+
ndarray: Symmetrized probability matrix.
42+
43+
>>> x = np.array([[0.0, 0.0], [1.0, 0.0]])
44+
>>> probabilities = compute_pairwise_affinities(x)
45+
>>> float(round(probabilities[0, 1], 3))
46+
0.25
47+
"""
48+
n_samples = data_matrix.shape[0]
49+
squared_sum = np.sum(np.square(data_matrix), axis=1)
50+
squared_distance = np.add(
51+
np.add(-2 * np.dot(data_matrix, data_matrix.T), squared_sum).T, squared_sum
52+
)
53+
54+
affinity_matrix = np.exp(-squared_distance / (2 * sigma**2))
55+
np.fill_diagonal(affinity_matrix, 0)
56+
57+
affinity_matrix /= np.sum(affinity_matrix)
58+
return (affinity_matrix + affinity_matrix.T) / (2 * n_samples)
59+
60+
61+
def compute_low_dim_affinities(embedding_matrix: ndarray) -> tuple[ndarray, ndarray]:
62+
"""
63+
Compute low-dimensional affinities (Q matrix) using a Student-t distribution.
64+
65+
Args:
66+
embedding_matrix: Low-dimensional embedding of shape (n_samples, n_components).
67+
68+
Returns:
69+
tuple[ndarray, ndarray]: (Q probability matrix, numerator matrix).
70+
71+
>>> y = np.array([[0.0, 0.0], [1.0, 0.0]])
72+
>>> q_matrix, numerators = compute_low_dim_affinities(y)
73+
>>> q_matrix.shape
74+
(2, 2)
75+
"""
76+
squared_sum = np.sum(np.square(embedding_matrix), axis=1)
77+
numerator_matrix = 1 / (
78+
1
79+
+ np.add(
80+
np.add(-2 * np.dot(embedding_matrix, embedding_matrix.T), squared_sum).T,
81+
squared_sum,
82+
)
83+
)
84+
np.fill_diagonal(numerator_matrix, 0)
85+
86+
q_matrix = numerator_matrix / np.sum(numerator_matrix)
87+
return q_matrix, numerator_matrix
88+
89+
90+
def apply_tsne(
91+
data_matrix: ndarray,
92+
n_components: int = 2,
93+
learning_rate: float = 200.0,
94+
n_iter: int = 500,
95+
) -> ndarray:
96+
"""
97+
Apply t-SNE for dimensionality reduction.
98+
99+
Args:
100+
data_matrix: Original dataset (features).
101+
n_components: Target dimension (2D or 3D).
102+
learning_rate: Step size for gradient descent.
103+
n_iter: Number of iterations.
104+
105+
Returns:
106+
ndarray: Low-dimensional embedding of the data.
107+
108+
>>> features, _ = collect_dataset()
109+
>>> embedding = apply_tsne(features, n_components=2, n_iter=50)
110+
>>> embedding.shape
111+
(150, 2)
112+
"""
113+
if n_components < 1 or n_iter < 1:
114+
raise ValueError("n_components and n_iter must be >= 1")
115+
116+
n_samples = data_matrix.shape[0]
117+
rng = np.random.default_rng()
118+
embedding = rng.standard_normal((n_samples, n_components)) * 1e-4
119+
120+
high_dim_affinities = compute_pairwise_affinities(data_matrix)
121+
high_dim_affinities = np.maximum(high_dim_affinities, 1e-12)
122+
123+
embedding_increment = np.zeros_like(embedding)
124+
momentum = 0.5
125+
126+
for iteration in range(n_iter):
127+
low_dim_affinities, numerator_matrix = compute_low_dim_affinities(embedding)
128+
low_dim_affinities = np.maximum(low_dim_affinities, 1e-12)
129+
130+
affinity_diff = high_dim_affinities - low_dim_affinities
131+
132+
gradient = 4 * (
133+
np.dot((affinity_diff * numerator_matrix), embedding)
134+
- np.multiply(
135+
np.sum(affinity_diff * numerator_matrix, axis=1)[:, np.newaxis],
136+
embedding,
137+
)
138+
)
139+
140+
embedding_increment = momentum * embedding_increment - learning_rate * gradient
141+
embedding += embedding_increment
142+
143+
if iteration == int(n_iter / 4):
144+
momentum = 0.8
145+
146+
return embedding
147+
148+
149+
def main() -> None:
150+
"""
151+
Run t-SNE on the Iris dataset and display the first 5 embeddings.
152+
153+
>>> main() # doctest: +ELLIPSIS
154+
t-SNE embedding (first 5 points):
155+
[[...
156+
"""
157+
features, _labels = collect_dataset()
158+
embedding = apply_tsne(features, n_components=2, n_iter=300)
159+
160+
if not isinstance(embedding, np.ndarray):
161+
raise TypeError("t-SNE embedding must be an ndarray")
162+
163+
print("t-SNE embedding (first 5 points):")
164+
print(embedding[:5])
165+
166+
# Optional visualization (Ruff/mypy compliant)
167+
168+
# import matplotlib.pyplot as plt
169+
# plt.scatter(embedding[:, 0], embedding[:, 1], c=labels, cmap="viridis")
170+
# plt.title("t-SNE Visualization of the Iris Dataset")
171+
# plt.xlabel("Dimension 1")
172+
# plt.ylabel("Dimension 2")
173+
# plt.show()
174+
175+
176+
if __name__ == "__main__":
177+
doctest.testmod()
178+
main()

0 commit comments

Comments
 (0)