@@ -647,7 +647,7 @@ Here is a plot of the firm size distribution for the largest 500 firms in 2020 t
647647``` {code-cell} ipython3
648648:tags: [hide-input]
649649
650- df_fs = pd.read_csv('https://media.githubusercontent.com/media/QuantEcon/high_dim_data/update_csdata /cross_section/forbes-global2000.csv')
650+ df_fs = pd.read_csv('https://media.githubusercontent.com/media/QuantEcon/high_dim_data/main /cross_section/forbes-global2000.csv')
651651df_fs = df_fs[['Country', 'Sales', 'Profits', 'Assets', 'Market Value']]
652652fig, ax = plt.subplots(figsize=(6.4, 3.5))
653653
@@ -669,8 +669,8 @@ The size is measured by population.
669669:tags: [hide-input]
670670
671671# import population data of cities in 2023 United States and 2023 Brazil from world population review
672- df_cs_us = pd.read_csv('https://media.githubusercontent.com/media/QuantEcon/high_dim_data/update_csdata /cross_section/cities_us.csv')
673- df_cs_br = pd.read_csv('https://media.githubusercontent.com/media/QuantEcon/high_dim_data/update_csdata /cross_section/cities_brazil.csv')
672+ df_cs_us = pd.read_csv('https://media.githubusercontent.com/media/QuantEcon/high_dim_data/main /cross_section/cities_us.csv')
673+ df_cs_br = pd.read_csv('https://media.githubusercontent.com/media/QuantEcon/high_dim_data/main /cross_section/cities_brazil.csv')
674674
675675fig, axes = plt.subplots(1, 2, figsize=(8.8, 3.6))
676676
@@ -689,7 +689,7 @@ The data is from the Forbes Billionaires list in 2020.
689689``` {code-cell} ipython3
690690:tags: [hide-input]
691691
692- df_w = pd.read_csv('https://media.githubusercontent.com/media/QuantEcon/high_dim_data/update_csdata /cross_section/forbes-billionaires.csv')
692+ df_w = pd.read_csv('https://media.githubusercontent.com/media/QuantEcon/high_dim_data/main /cross_section/forbes-billionaires.csv')
693693df_w = df_w[['country', 'realTimeWorth', 'realTimeRank']].dropna()
694694df_w = df_w.astype({'realTimeRank': int})
695695df_w = df_w.sort_values('realTimeRank', ascending=True).copy()
0 commit comments